Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A wavelength-induced frequency filtering method for fluorescent nanosensors in vivo

Abstract

Fluorescent nanosensors hold the potential to revolutionize life sciences and medicine. However, their adaptation and translation into the in vivo environment is fundamentally hampered by unfavourable tissue scattering and intrinsic autofluorescence. Here we develop wavelength-induced frequency filtering (WIFF) whereby the fluorescence excitation wavelength is modulated across the absorption peak of a nanosensor, allowing the emission signal to be separated from the autofluorescence background, increasing the desired signal relative to noise, and internally referencing it to protect against artefacts. Using highly scattering phantom tissues, an SKH1-E mouse model and other complex tissue types, we show that WIFF improves the nanosensor signal-to-noise ratio across the visible and near-infrared spectra up to 52-fold. This improvement enables the ability to track fluorescent carbon nanotube sensor responses to riboflavin, ascorbic acid, hydrogen peroxide and a chemotherapeutic drug metabolite for depths up to 5.5 ± 0.1 cm when excited at 730 nm and emitting between 1,100 and 1,300 nm, even allowing the monitoring of riboflavin diffusion in thick tissue. As an application, nanosensors aided by WIFF detect the chemotherapeutic activity of temozolomide transcranially at 2.4 ± 0.1 cm through the porcine brain without the use of fibre optic or cranial window insertion. The ability of nanosensors to monitor previously inaccessible in vivo environments will be important for life-sciences research, therapeutics and medical diagnostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges for deep-tissue sensing.
Fig. 2: Principle of WIFF.
Fig. 3: WIFF performance in a complex tissue.
Fig. 4: Elucidating the effect of autofluorescence on WIFF and deep-tissue detection.
Fig. 5: In vivo sensing.
Fig. 6: Transcranial dynamics of the chemotherapeutic metabolite AIC in porcine brain.

Similar content being viewed by others

Data availability

Source data are available via Zenodo at https://doi.org/10.5281/zenodo.6049452. The data that support the findings of this study are available in the paper and Supplementary Information. All other data are available from the corresponding author upon reasonable request.

References

  1. Aron, A. T., Ramos-Torres, K. M., Cotruvo, J. A. & Chang, C. J. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc. Chem. Res. 48, 2434–2442 (2015).

    Article  CAS  Google Scholar 

  2. Lin, V. S., Chen, W., Xian, M. & Chang, C. J. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem. Soc. Rev. 44, 4596–4618 (2015).

    Article  CAS  Google Scholar 

  3. Cotruvo, J. J. A., Aron, A. T., Ramos-Torres, K. M. & Chang, C. J. Synthetic fluorescent probes for studying copper in biological systems. Chem. Soc. Rev. 44, 4400–4414 (2015).

    Article  CAS  Google Scholar 

  4. Giuliano, K. A. & Taylor, D. L. Fluorescent-protein biosensors: new tools for drug discovery. Trends Biotechnol. 16, 135–140 (1998).

    Article  CAS  Google Scholar 

  5. Wolff, M., Wiedenmann, J., Nienhaus, G. U., Valler, M. & Heilker, R. Novel fluorescent proteins for high-content screening. Drug Discov. Today 11, 1054–1060 (2006).

    Article  CAS  Google Scholar 

  6. Bera, K. et al. Biosensors show the pharmacokinetics of S-ketamine in the endoplasmic reticulum. Front. Cell. Neurosci. 13, 499 (2019).

  7. Chen, W.-T., Mahmood, U., Weissleder, R. & Tung, C.-H. Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res. Ther. 7, R310 (2005).

    Article  CAS  Google Scholar 

  8. Xie, D. Fluorescent dye labeled influenza virus mainly infects innate immune cells and activated lymphocytes and can be used in cell-mediated immune response assay. J. Immunol. Methods 343, 42–48 (2009).

    Article  CAS  Google Scholar 

  9. Cruz Hernández, J. C. et al. Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat. Neurosci. 22, 413–420 (2019).

    Article  CAS  Google Scholar 

  10. Lee, M. H. et al. Toward a chemical marker for inflammatory disease: a fluorescent probe for membrane-localized thioredoxin. J. Am. Chem. Soc. 136, 8430–8437 (2014).

    Article  CAS  Google Scholar 

  11. Midde, K. et al. Single-cell imaging of metastatic potential of cancer cells. iScience 10, 53–65 (2018).

    Article  CAS  Google Scholar 

  12. Mehrotra, P. Biosensors and their applications—a review. J. Oral Biol. Craniofac. Res. 6, 153–159 (2016).

    Article  Google Scholar 

  13. Sieroń, A. et al. The role of fluorescence diagnosis in clinical practice. Onco Targets Ther. 6, 977–982 (2013).

    Google Scholar 

  14. Emanuel, G., Moffitt, J. R. & Zhuang, X. High-throughput, image-based screening of pooled genetic-variant libraries. Nat. Methods 14, 1159–1162 (2017).

    Article  CAS  Google Scholar 

  15. Koch, M., Symvoulidis, P. & Ntziachristos, V. Tackling standardization in fluorescence molecular imaging. Nat. Photon. 12, 505–515 (2018).

    Article  CAS  Google Scholar 

  16. Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).

    Article  CAS  Google Scholar 

  17. Zheng, X. et al. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng. 1, 0057 (2017).

    Article  CAS  Google Scholar 

  18. Unruh, R. M. et al. Preclinical evaluation of poly(HEMA-co-acrylamide) hydrogels encapsulating glucose oxidase and palladium benzoporphyrin as fully implantable glucose sensors. J. Diabetes Sci. Technol. 9, 985–992 (2015).

    Article  CAS  Google Scholar 

  19. Cash, K. J. & Clark, H. A. In vivo histamine optical nanosensors. Sensors 12, 11922–11932 (2012).

    Article  CAS  Google Scholar 

  20. Yi, H. et al. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 12, 1176–1183 (2012).

    Article  CAS  Google Scholar 

  21. Yang, J. et al. Ultra-bright near-infrared-emitting HgS/ZnS core/shell nanocrystals for in vitro and in vivo imaging. J. Mater. Chem. B 3, 6928–6938 (2015).

    Article  CAS  Google Scholar 

  22. Chen, G. et al. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012).

    Article  CAS  Google Scholar 

  23. Iverson, N. M. et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8, 873–880 (2013).

    Article  CAS  Google Scholar 

  24. Bec, J. et al. In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system. Sci. Rep. 7, 8960 (2017).

    Article  CAS  Google Scholar 

  25. Boghossian, A. A. et al. Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem 4, 848–863 (2011).

    Article  CAS  Google Scholar 

  26. Zhang, J. et al. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8, 959–968 (2013).

    Google Scholar 

  27. Salem, D. P. et al. Ionic strength-mediated phase transitions of surface-adsorbed DNA on single-walled carbon nanotubes. J. Am. Chem. Soc. 139, 16791–16802 (2017).

    Article  CAS  Google Scholar 

  28. Rieker, G. B., Jeffries, J. B. & Hanson, R. K. Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design. Appl. Phys. B 94, 51–63 (2009).

    Article  CAS  Google Scholar 

  29. Shimada, T. et al. Pharmacokinetic advantage of intraperitoneal injection of docetaxel in the treatment for peritoneal dissemination of cancer in mice. J. Pharm. Pharmacol. 57, 177–181 (2005).

    Article  CAS  Google Scholar 

  30. Lu, Z., Wang, J., Wientjes, M. G. & Au, J. L. S. Intraperitoneal therapy for peritoneal cancer. Future Oncol. 6, 1625–1641 (2010).

    Article  Google Scholar 

  31. Zempleni, J., Galloway, J. R. & McCormick, D. B. Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am. J. Clin. Nutr. 63, 54–66 (1996).

    Article  CAS  Google Scholar 

  32. Park, M. et al. Measuring the accessible surface area within the nanoparticle corona using molecular probe adsorption. Nano Lett. 19, 7712–7724 (2019).

    Article  CAS  Google Scholar 

  33. Koman, V. B., von Moos, N. R., Santschi, C., Slaveykova, V. I. & Martin, O. J. F. New insights into ROS dynamics: a multi-layered microfluidic chip for ecotoxicological studies on aquatic microorganisms. Nanotoxicology 10, 1041–1050 (2016).

    Article  CAS  Google Scholar 

  34. Loock, H.-P. & Wentzell, P. D. Detection limits of chemical sensors: applications and misapplications. Sens. Actuators B 173, 157–163 (2012).

    Article  CAS  Google Scholar 

  35. Krasnovsky, A. Jr. & Kovalev, Y. Spectral and kinetic parameters of phosphorescence of triplet chlorophyll a in the photosynthetic apparatus of plants. Biochemistry 79, 349–361 (2014).

    CAS  Google Scholar 

  36. Inoue, Y., Izawa, K., Kiryu, S., Tojo, A. & Ohtomo, K. Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice. Mol. Imaging 7, 7290.2008.0003 (2008).

    Article  Google Scholar 

  37. Kim, H., Park, H. & Lee, S. J. Effective method for drug injection into subcutaneous tissue. Sci. Rep. 7, 9613 (2017).

    Article  Google Scholar 

  38. Mortellaro, M. & DeHennis, A. Performance characterization of an abiotic and fluorescent-based continuous glucose monitoring system in patients with type 1 diabetes. Biosens. Bioelectron. 61, 227–231 (2014).

    Article  CAS  Google Scholar 

  39. Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).

    Article  CAS  Google Scholar 

  40. Fukui, H. Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm. Intest. Dis. 1, 135–145 (2016).

    Article  Google Scholar 

  41. Penet, M.-F. et al. Applications of molecular MRI and optical imaging in cancer. Future Med. Chem. 2, 975–988 (2010).

    Article  CAS  Google Scholar 

  42. Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693 (2002).

    Article  CAS  Google Scholar 

  43. Ibla, J. C. & Khoury, J. in CellCell Interactions: Methods and Protocols Vol. 1066 (ed. Colgan, S. P.) 111–117 (Humana Press, 2006).

  44. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    Article  Google Scholar 

  45. Hambardzumyan, D. & Bergers, G. Glioblastoma: defining tumor niches. Trends Cancer 1, 252–265 (2015).

    Article  Google Scholar 

  46. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  Google Scholar 

  47. Friedman, H. S., Kerby, T. & Calvert, H. Temozolomide and treatment of malignant glioma. Clin. Cancer Res. 6, 2585–2597 (2000).

    CAS  Google Scholar 

  48. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  Google Scholar 

  49. Portnow, J. et al. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin. Cancer Res. 15, 7092–7098 (2009).

    Article  CAS  Google Scholar 

  50. Liu, H.-L. et al. Pharmacodynamic and therapeutic investigation of focused ultrasound-induced blood-brain barrier opening for enhanced temozolomide delivery in glioma treatment. PLoS ONE 9, e114311 (2014).

    Article  CAS  Google Scholar 

  51. Kato, Y., Holm, D. A., Okollie, B. & Artemov, D. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy. Neuro. Oncol. 12, 71–79 (2010).

  52. Arı, K. et al. 99mTc(I) carbonyl-radiolabeled lipid based drug carriers for temozolomide delivery and bioevaluation by in vitro and in vivo. Radiochim. Acta 107, 1185–1193 (2019).

    Article  CAS  Google Scholar 

  53. Torricelli, A. et al. Time domain functional NIRS imaging for human brain mapping. NeuroImage 85, 28–50 (2014).

  54. Strangman, G. E., Li, Z. & Zhang, Q. Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template. PLoS ONE 8, e66319 (2013).

    Article  CAS  Google Scholar 

  55. Wellman, S. M. & Kozai, T. D. Y. Understanding the inflammatory tissue reaction to brain implants to improve neurochemical sensing performance. ACS Chem. Neurosci. 8, 2578–2582 (2017).

    Article  CAS  Google Scholar 

  56. Dorand, R. D., Barkauskas, D. S., Evans, T. A., Petrosiute, A. & Huang, A. Y. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. IntraVital 3, e29728 (2014).

    Article  Google Scholar 

  57. Wen, Q. et al. Association of diffusion and anatomic imaging parameters with survival for patients with newly diagnosed glioblastoma participating in two different clinical trials. Transl. Oncol. 8, 446–455 (2015).

    Article  Google Scholar 

  58. Landry, M. P. et al. Experimental tools to study molecular recognition within the nanoparticle corona. Sensors 14, 16196–16211 (2014).

    Article  CAS  Google Scholar 

  59. Hendler-Neumark, A. & Bisker, G. Fluorescent single-walled carbon nanotubes for protein detection. Sensors 19, 5403 (2019).

    Article  CAS  Google Scholar 

  60. Landry, M. P. et al. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 12, 368–377 (2017).

    Article  CAS  Google Scholar 

  61. Jin, H. et al. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 5, 302–309 (2010).

    Article  CAS  Google Scholar 

  62. Bisker, G. et al. Insulin detection using a corona phase molecular recognition site on single-walled carbon nanotubes. ACS Sens. 3, 367–377 (2018).

    Article  CAS  Google Scholar 

  63. Bisker, G. et al. Protein-targeted corona phase molecular recognition. Nat. Commun. 7, 10241 (2016).

    Article  CAS  Google Scholar 

  64. Flock, S. T., Jacques, S. L., Wilson, B. C., Star, W. M. & van Gemert, M. J. C. Optical properties of intralipid: a phantom medium for light propagation studies. Lasers Surg. Med. 12, 510–519 (1992).

    Article  CAS  Google Scholar 

  65. Koman, V. B., Santschi, C. & Martin, O. J. F. Maximal absorption regime in random media. Opt. Express 24, A1306–A1320 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the Koch Institute for Integrative Cancer Research at MIT and the Bridge Project Program. V.B.K. is supported by The Swiss National Science Foundation (project nos. P2ELP3_162149 and P300P2_174469). D.K. is supported by the Grant-in-Aid for JSPS Fellows (JSPS KAKENHI grant no. 15J07423) and Encouragement of Young Scientists (B) (JSPS KAKENHI grant no. JP16K17485) from the Japan Society for the Promotion of Science. X.J. is supported by the King Abdullah University of Science & Technology (OSR-2015 Sensors 2707). G.B. acknowledges support from the Zuckerman STEM Leadership Program and the Israeli Science Foundation (grant no. 456/18). F.T.N. is supported by the Arnold O. Beckman Postdoctoral Fellowship from the Arnold and Mabel Beckman Foundation. V.B.K. acknowledges helpful discussions with J. Yang.

Author information

Authors and Affiliations

Authors

Contributions

V.B.K. and M.S.S. conceived the idea and planned the experiments with the assistance of N.A.B., X.J. and F.T.N. V.B.K. developed the experimental setup, performed the in vitro experiments and analysed the data with the assistance of D.K., F.T.N., M.A.L., G.B. and J.D. F.T.N. and V.B.K. performed the tissue autofluorescence studies. N.A.B. and X.J. performed the ex vivo and in vivo experiments with the assistance of V.B.K. V.B.K. and M.S.S. wrote the manuscript with inputs from all the authors. All the authors contributed to discussions regarding the research.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Yun-Sheng Chen and Fan Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Tables 1–4 and Figs. 1–35.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koman, V.B., Bakh, N.A., Jin, X. et al. A wavelength-induced frequency filtering method for fluorescent nanosensors in vivo. Nat. Nanotechnol. 17, 643–652 (2022). https://doi.org/10.1038/s41565-022-01136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01136-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing