Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retrieval of phase relation and emission profile of quantum cascade laser frequency combs

Abstract

Recently, the field of optical frequency combs experienced a major development of new sources. They are generally much smaller in size (on the scale of millimetres) and can extend frequency comb emission to other spectral regions, in particular towards the mid- and far-infrared regions. Unlike classical pulsed frequency combs, their mode-locking mechanism relies on four-wave-mixing nonlinear processes, yielding a non-trivial phase relation among the modes and an uncommon emission time profile. Here, by combining dual-comb multi-heterodyne detection with Fourier-transform analysis, we show how to simultaneously acquire and monitor over a wide range of timescales the phase pattern of a generic (unknown) frequency comb. The technique is applied to characterize both a mid-infrared and a terahertz quantum cascade laser frequency comb, conclusively proving the high degree of coherence and the remarkable long-term stability of these sources. Moreover, the technique allows also the reconstruction of the electric field, intensity profile and instantaneous frequency of the emission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up.
Fig. 2: Femtosecond-pulsed FC phase relation.
Fig. 3: FFT amplitude spectrum of the RF-FC related to the THz QCL comb.
Fig. 4: Phases of the BNs related to the QCL combs computed by the FFT routine.
Fig. 5: THz QCL comb emission.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  2. Diddams, S. A. et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102–5105 (2000).

    Article  ADS  Google Scholar 

  3. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    Article  ADS  Google Scholar 

  4. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  5. Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51 (2010).

    Article  Google Scholar 

  6. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  7. Beck, M. et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002).

    Article  ADS  Google Scholar 

  8. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  9. Tombez, L. et al. Wavelength tuning and thermal dynamics of continuous-wave mid-infrared distributed feedback quantum cascade lasers. Appl. Phys. Lett. 103, 031111 (2013).

    Article  ADS  Google Scholar 

  10. Consolino, L., Cappelli, F., Siciliani de Cumis, M. & De Natale, P. QCL-based frequency metrology from the mid-infrared to the THz range: a review. Nanophotonics 8, 181–204 (2018).

    Article  Google Scholar 

  11. Faist, J. Quantum Cascade Lasers (Oxford Univ. Press, 2013).

  12. Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    Article  ADS  Google Scholar 

  13. Malara, P. et al. External ring-cavity quantum cascade lasers. Appl. Phys. Lett. 102, 141105 (2013).

    Article  ADS  Google Scholar 

  14. Faist, J. et al. Quantum cascade laser frequency combs. Nanophotonics 5, 272–291 (2016).

    Article  Google Scholar 

  15. Wang, C. Y. et al. Mode-locked pulses from mid-infrared quantum cascade lasers. Opt. Express 17, 12929–12943 (2009).

    Article  ADS  Google Scholar 

  16. Revin, D. G., Hemingway, M., Wang, Y., Cockburn, J. W. & Belyanin, A. Active mode locking of quantum cascade lasers in an external ring cavity. Nat. Commun. 7, 11440 (2016).

    Article  ADS  Google Scholar 

  17. Barbieri, S. et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nat. Photon. 5, 306–313 (2011).

    Article  ADS  Google Scholar 

  18. Wang, F. et al. Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser. Laser Photon. Rev. 11, 1700013 (2017).

    Article  ADS  Google Scholar 

  19. Riedi, S., Hugi, A., Bismuto, A., Beck, M. & Faist, J. Broadband external cavity tuning in the 3−4 μm window. Appl. Phys. Lett. 103, 031108 (2013).

    Article  ADS  Google Scholar 

  20. Riedi, S. et al. Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device. Opt. Express 23, 7184–7189 (2015).

    Article  ADS  Google Scholar 

  21. Burghoff, D. et al. Terahertz laser frequency combs. Nat. Photon. 8, 462–467 (2014).

    Article  ADS  Google Scholar 

  22. Rösch, M., Scalari, G., Beck, M. & Faist, J. Octave-spanning semiconductor laser. Nat. Photon. 9, 42–47 (2014).

    Article  ADS  Google Scholar 

  23. Friedli, P. et al. Four-wave mixing in a quantum cascade laser amplifier. Appl. Phys. Lett. 102, 222104 (2013).

    Article  ADS  Google Scholar 

  24. DeLong, K. W., Trebino, R., Hunter, J. & White, W. E. Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B 11, 2206–2215 (1994).

    Article  ADS  Google Scholar 

  25. Freeman, J. R. et al. Electric field sampling of modelocked pulses from a quantum cascade laser. Opt. Express 21, 16162–16169 (2013).

    Article  ADS  Google Scholar 

  26. Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).

    Article  ADS  Google Scholar 

  27. Cappelli, F. et al. Frequency stability characterization of a quantum cascade laser frequency comb. Laser Photon. Rev. 10, 623–630 (2016).

    Article  ADS  Google Scholar 

  28. Cappelli, F., Villares, G., Riedi, S. & Faist, J. Intrinsic linewidth of quantum cascade laser frequency combs. Optica 2, 836–840 (2015).

    Article  Google Scholar 

  29. Burghoff, D. et al. Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs. Opt. Express 23, 1190–1202 (2015).

    Article  ADS  Google Scholar 

  30. Singleton, M., Jouy, P., Beck, M. & Faist, J. Evidence of linear chirp in mid-infrared quantum cascade lasers. Optica 5, 948–953 (2018).

    Article  Google Scholar 

  31. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    Article  ADS  Google Scholar 

  32. Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

    Article  Google Scholar 

  33. Chen, Z., Yan, M., Hänsch, T. & Picqué, N. A phase-stable dual-comb interferometer. Nat. Commun. 9, 3035 (2018).

    Article  ADS  Google Scholar 

  34. Galli, I. et al. High-coherence mid-infrared frequency comb. Opt. Express 21, 28877–28885 (2013).

    Article  ADS  Google Scholar 

  35. Galli, I. et al. Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy. Opt. Lett. 39, 5050–5053 (2014).

    Article  ADS  Google Scholar 

  36. Campo, G. et al. Shaping the spectrum of a down-converted mid-infrared frequency comb. J. Opt. Soc. Am. B 34, 2287–2294 (2017).

    Article  ADS  Google Scholar 

  37. Consolino, L. et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun. 3, 1040 (2012).

    Article  ADS  Google Scholar 

  38. Bartalini, S. et al. Frequency-comb-assisted terahertz quantum cascade laser spectroscopy. Phys. Rev. X 4, 021006 (2014).

    Google Scholar 

  39. Benea-Chelmus, I.-C., Rösch, M., Scalari, G., Beck, M. & Faist, J. Intensity autocorrelation measurements of frequency combs in the terahertz range. Phys. Rev. A 96, 033821 (2017).

    Article  ADS  Google Scholar 

  40. Wang, F. et al. Generating ultrafast pulses of light from quantum cascade lasers. Optica 2, 944–949 (2015).

    Article  Google Scholar 

  41. Ferdous, F. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photon. 5, 770–776 (2011).

    Article  ADS  Google Scholar 

  42. Khurgin, J. B., Dikmelik, Y., Hugi, A. & Faist, J. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. Appl. Phys. Lett. 104, 081118 (2014).

    Article  ADS  Google Scholar 

  43. Villares, G. & Faist, J. Quantum cascade laser combs: effects of modulation and dispersion. Opt. Express 23, 1651–1669 (2015).

    Article  ADS  Google Scholar 

  44. Tzenov, P., Burghoff, D., Hu, Q. & Jirauschek, C. Time domain modeling of terahertz quantum cascade lasers for frequency comb generation. Opt. Express 24, 23232–23247 (2016).

    Article  ADS  Google Scholar 

  45. Del’Haye, P., Beha, K., Papp, S. B. & Diddams, S. A. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112, 043905 (2014).

    Article  ADS  Google Scholar 

  46. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2013).

    Article  ADS  Google Scholar 

  47. Mazzacurati, V., Benassi, P. & Ruocco, G. A new class of multiple dispersion grating spectrometers. J. Phys. E 21, 798–804 (1988).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Ministero dell’Istruzione, dell’Università e della Ricerca (project PRIN-2015KEZNYM NEMO), the European Union’s Horizon 2020 research and innovation programme (Laserlab-Europe Project, grant no. 654148; CHIC Project, ERC grant no. 724344; ULTRAQCL Project, FET Open grant no 665158; Qombs Project, FET Flagship on Quantum Technologies grant no. 820419), the Italian ESFRI Roadmap (‘Extreme Light Infrastructure’—ELI Project) and the Swiss National Science Foundation (SNF200020-165639).

Author information

Authors and Affiliations

Authors

Contributions

F.C. and S.B. conceived the experiment. L.C., F.C., G.C., I.G., M.S.d.C., A.C., P.C.P. and R.E. performed the measurements. F.C., G.C., R.E. and S.B. analysed the data. L.C. and F.C. wrote the manuscript. G.C., D.M., M.S.d.C., P.C.P., R.E., S.B., G.S., J.F. and P.D.N. contributed to manuscript revision. J.F., G.S., M.R. and M.B. provided the quantum cascade lasers. L.C., F.C., D.M., P.C.P., R.E., S.B., G.S., J.F. and P.D.N. discussed the results. All work was performed under the joint supervision of P.D.N. and S.B.

Corresponding authors

Correspondence to Francesco Cappelli or Luigi Consolino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figs. 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappelli, F., Consolino, L., Campo, G. et al. Retrieval of phase relation and emission profile of quantum cascade laser frequency combs. Nat. Photonics 13, 562–568 (2019). https://doi.org/10.1038/s41566-019-0451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0451-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing