Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prospects and challenges of colloidal quantum dot laser diodes

Abstract

Colloidal quantum dots (QDs) combine the superior light-emission characteristics of quantum-confined semiconductors with the chemical flexibility of molecular systems. These properties could, in principle, enable solution-processable laser diodes with an ultrawide range of accessible colours. However, the realization of such devices has been hampered by fast optical gain decay due to non-radiative Auger recombination and poor stability of QD solids at the high current densities required for the lasing regime. Recently, these problems have been resolved, which resulted in the development of electrically pumped optical gain devices operating at ultrahigh current densities of around 1,000 A cm−2. The next step is the realization of a QD laser diode (QLD). Here we assess the status of the QD lasing field, examine the remaining challenges on the path to a QLD and discuss practical strategies for attaining electrically pumped QD lasing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electronic states in QDs and principles of optical gain in QD media.
Fig. 2: Principles of QLDs.
Fig. 3: Three-state optical-gain model and gain media based on cg-QDs.
Fig. 4: Droop-free QD-LEDs enabled by QD- and device-level engineering.
Fig. 5: Optical gain using high-current-density QD-LEDs.
Fig. 6: A QD-LED with an integrated optical cavity.

Similar content being viewed by others

References

  1. Hall, R. N., Carlson, R. O., Soltys, T. J., Fenner, G. E. & Kingsley, J. D. Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366–368 (1962).

    Article  Google Scholar 

  2. Nathan, M. I., Dumke, W. P., Burns, G., Dill, F. H. & Lasher, G. Stimulated emission of radiation from GaAs p–n junctions. Appl. Phys. Lett. 1, 62–64 (1962).

    Article  Google Scholar 

  3. Coldren, L. A., Corzine, S. W. & Mashanovitch, M. L. Diode Lasers and Photonic Integrated Circuits 2nd edn (Wiley, 2012).

  4. Holonyak, N., Kolbas, R., Dupuis, R. & Dapkus, P. Quantum-well heterostructure lasers. IEEE J. Quantum Electron. 16, 170–186 (1980).

    Article  Google Scholar 

  5. Jung, H. et al. Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide. Opt. Express 25, 32919–32930 (2017).

    Article  Google Scholar 

  6. Clark, J. & Lanzani, G. Organic photonics for communications. Nat. Photon. 4, 438–446 (2010).

    Article  Google Scholar 

  7. Xie, W. et al. On-chip integrated quantum-dot–silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).

    Article  Google Scholar 

  8. Cegielski, P. J. et al. Monolithically integrated perovskite semiconductor lasers on silicon photonic chips by scalable top-down fabrication. Nano Lett. 18, 6915–6923 (2018).

    Article  Google Scholar 

  9. Karl, M. et al. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun. 9, 1525 (2018).

    Article  Google Scholar 

  10. Vannahme, C., Klinkhammer, S., Lemmer, U. & Mappes, T. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Opt. Express 19, 8179–8186 (2011).

    Article  Google Scholar 

  11. Chen, Y.-C. & Fan, X. Biological lasers for biomedical applications. Adv. Opt. Mater. 7, 1900377 (2019).

    Article  Google Scholar 

  12. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  Google Scholar 

  13. Wang, Y. & Sun, H. Advances and prospects of lasers developed from colloidal semiconductor nanostructures. Prog. Quantum Electron. 60, 1–29 (2018).

    Article  Google Scholar 

  14. Geiregat, P., Van Thourhout, D. & Hens, Z. A bright future for colloidal quantum dot lasers. NPG Asia Mater. 11, 41 (2019).

    Article  Google Scholar 

  15. Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    Article  Google Scholar 

  16. Peng, X., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997).

    Article  Google Scholar 

  17. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  Google Scholar 

  18. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  Google Scholar 

  19. Li, L.-s, Walda, J., Manna, L. & Alivisatos, A. P. Semiconductor nanorod liquid crystals. Nano Lett. 2, 557–560 (2002).

    Article  Google Scholar 

  20. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382–385 (2003).

    Article  Google Scholar 

  21. Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

    Article  Google Scholar 

  22. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011).

    Article  Google Scholar 

  23. Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Article  Google Scholar 

  24. Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  Google Scholar 

  25. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  Google Scholar 

  26. Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).

    Article  Google Scholar 

  27. Xie, W. et al. On-chip integrated quantum-dot-silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).

    Article  Google Scholar 

  28. Roh, J., Park, Y.-S., Lim, J. & Klimov, V. I. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat. Commun. 11, 271 (2020).

    Article  Google Scholar 

  29. Peng, X., Wickham, J. & Alivisatos, A. P. Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: ‘focusing’ of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998).

    Article  Google Scholar 

  30. Yu, W. W. & Peng, X. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 41, 2368–2371 (2002).

    Article  Google Scholar 

  31. Yu, W. W., Wang, Y. A. & Peng, X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem. Mater. 15, 4300–4308 (2003).

    Article  Google Scholar 

  32. Biadala, L. et al. Band-edge exciton fine structure and recombination dynamics in InP/ZnS colloidal nanocrystals. ACS Nano 10, 3356–3364 (2016).

    Article  Google Scholar 

  33. Mićić, O. I. et al. Size-dependent spectroscopy of InP quantum dots. J. Phys. Chem. B 101, 4904–4912 (1997).

    Article  Google Scholar 

  34. Sun, L. et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat. Nanotechnol. 7, 369–373 (2012).

    Article  Google Scholar 

  35. Moreels, I. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009).

    Article  Google Scholar 

  36. Miller, E. M. et al. Revisiting the valence and conduction band size dependence of PbS quantum dot thin films. ACS Nano 10, 3302–3311 (2016).

    Article  Google Scholar 

  37. Pietryga, J. M. et al. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126, 11752–11753 (2004).

    Article  Google Scholar 

  38. Yu, W. W., Qu, L., Guo, W. & Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003).

    Article  Google Scholar 

  39. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    Article  Google Scholar 

  40. Asada, M., Miyamoto, Y. & Suematsu, Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron. 22, 1915–1921 (1986).

    Article  Google Scholar 

  41. Moreels, I. et al. Nearly temperature-independent threshold for amplified spontaneous emission in colloidal CdSe/CdS quantum dot-in-rods. Adv. Mater. 24, OP231–OP235 (2012).

    Article  Google Scholar 

  42. Park, Y.-S., Bae, W. K., Baker, T., Lim, J. & Klimov, V. I. Effect of Auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 15, 7319–7328 (2015).

    Article  Google Scholar 

  43. Schaller, R. D., Petruska, M. A. & Klimov, V. I. Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals. J. Phys. Chem. B 107, 13765–13768 (2003).

    Article  Google Scholar 

  44. Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).

    Article  Google Scholar 

  45. Wu, K., Park, Y.-S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    Article  Google Scholar 

  46. Wang, C., Wehrenberg, B. L., Woo, C. Y. & Guyot-Sionnest, P. Light emission and amplification in charged CdSe quantum dots. J. Phys. Chem. B 108, 9027–9031 (2004).

    Article  Google Scholar 

  47. Kozlov, O. V. et al. Sub–single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science 365, 672–675 (2019).

    Article  Google Scholar 

  48. Yu, J. et al. Electrically control amplified spontaneous emission in colloidal quantum dots. Sci. Adv. 5, eaav3140 (2019).

    Article  Google Scholar 

  49. Christodoulou, S. et al. Single-exciton gain and stimulated emission across the infrared telecom band from robust heavily doped PbS colloidal quantum dots. Nano Lett. 20, 5909–5915 (2020).

    Article  Google Scholar 

  50. Landsberg, P. T. Recombination in Semiconductors (Cambridge Univ. Press, 1991).

  51. Pietryga, J. M., Zhuravlev, K. K., Whitehead, M., Klimov, V. I. & Schaller, R. D. Evidence for barrierless Auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption. Phys. Rev. Lett. 101, 217401 (2008).

    Article  Google Scholar 

  52. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article  Google Scholar 

  53. Robel, I., Gresback, R., Kortshagen, U., Schaller, R. D. & Klimov, V. I. Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 102, 177404 (2009).

    Article  Google Scholar 

  54. Crooker, S. A., Barrick, T., Hollingsworth, J. A. & Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic lmits of the dark-exciton lifetime. Appl. Phys. Lett. 82, 2793–2795 (2003).

    Article  Google Scholar 

  55. Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 5, 285–316 (2014).

    Article  Google Scholar 

  56. Mikhailovsky, A. A., Malko, A. V., Hollingsworth, J. A., Bawendi, M. G. & Klimov, V. I. Multiparticle interactions and stimulated emission in chemically synthesized quantum dots. Appl. Phys. Lett. 80, 2380–2382 (2002).

    Article  Google Scholar 

  57. Eisler, H.-J. et al. Color-selective semiconductor nanocrystal laser. Appl. Phys. Lett. 80, 4614–4616 (2002).

    Article  Google Scholar 

  58. Malko, A. V. et al. From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids. Appl. Phys. Lett. 81, 1303–1305 (2002).

    Article  Google Scholar 

  59. Dang, C. et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 7, 335–339 (2012).

    Article  Google Scholar 

  60. Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T. & Banin, U. Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317–321 (2002).

    Article  Google Scholar 

  61. Zavelani-Rossi, M., Lupo, M. G., Krahne, R., Manna, L. & Lanzani, G. J. N. Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods. Nanoscale 2, 931–935 (2010).

    Article  Google Scholar 

  62. She, C. et al. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 9, 9475–9485 (2015).

    Article  Google Scholar 

  63. Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 9, 891–895 (2014).

    Article  Google Scholar 

  64. Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    Article  Google Scholar 

  65. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).

    Article  Google Scholar 

  66. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  Google Scholar 

  67. Lim, J., Park, Y.-S., Wu, K., Yun, H. J. & Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).

    Article  Google Scholar 

  68. Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

    Article  Google Scholar 

  69. Sun, Y. et al. Investigation on thermally induced efficiency roll-off: toward efficient and ultrabright quantum-dot light-emitting diodes. ACS Nano 13, 11433–11442 (2019).

    Article  Google Scholar 

  70. Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 3661 (2013).

    Article  Google Scholar 

  71. Garcia-Santamaria, F. et al. Suppressed Auger recombination in ‘giant’ nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article  Google Scholar 

  72. Bisschop, S., Geiregat, P., Aubert, T. & Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 12, 9011–9021 (2018).

    Article  Google Scholar 

  73. Cragg, G. E. & Efros, A. L. Suppression of Auger processes in confined structures. Nano Lett. 10, 313–317 (2010).

    Article  Google Scholar 

  74. Vaxenburg, R., Lifshitz, E. & Efros, A. L. Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes. Appl. Phys. Lett. 102, 031120 (2013).

    Article  Google Scholar 

  75. Klimov, V. I., McGuire, J. A., Schaller, R. D. & Rupasov, V. I. Scaling of multiexciton lifetimes in semiconductor nanocrystals. Phys. Rev. B 77, 195324 (2008).

    Article  Google Scholar 

  76. Achermann, M., Bartko, A. P., Hollingsworth, J. A. & Klimov, V. I. The effect of Auger heating on intraband carrier relaxation in semiconductor qauntum dots. Nat. Phys. 2, 557–561 (2006).

    Article  Google Scholar 

  77. Zhang, M., Bhattacharya, P., Singh, J. & Hinckley, J. Direct measurement of auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 95, 201108 (2009).

    Article  Google Scholar 

  78. Bae, W. K. et al. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano 7, 3411–3419 (2013).

    Article  Google Scholar 

  79. Kwak, J. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 12, 2362–2366 (2012).

    Article  Google Scholar 

  80. Shahnawaz, S. et al. Hole-transporting materials for organic light-emitting diodes: an overview. J. Mater. Chem. C 7, 7144–7158 (2019).

    Article  Google Scholar 

  81. Choi, M. K. et al. Extremely vivid, highly transparent, and ultrathin quantum dot light-emitting diodes. Adv. Mater. 30, 1703279 (2018).

    Article  Google Scholar 

  82. Kim, H.-M., Cho, S., Kim, J., Shin, H. & Jang, J. Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 10, 24028–24036 (2018).

    Article  Google Scholar 

  83. Nam, S., Oh, N., Zhai, Y. & Shim, M. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS Nano 9, 878–885 (2015).

    Article  Google Scholar 

  84. Rhee, S. et al. ‘Positive incentive’ approach to enhance the operational stability of quantum dot-based light-emitting diodes. ACS Appl. Mater. Interfaces 11, 40252–40259 (2019).

    Article  Google Scholar 

  85. Moon, H. & Chae, H. Efficiency enhancement of all‐solution‐processed inverted‐structure green quantum dot light‐emitting diodes via partial ligand exchange with thiophenol derivatives having negative dipole moment. Adv. Opt. Mater. 8, 1901314 (2019).

    Article  Google Scholar 

  86. Bruening, M. et al. Polar ligand adsorption controls semiconductor surface potentials. J. Am. Chem. Soc. 116, 2972–2977 (1994).

    Article  Google Scholar 

  87. Zhao, Y. et al. High-temperature luminescence quenching of colloidal quantum dots. ACS Nano 6, 9058–9067 (2012).

    Article  Google Scholar 

  88. Rowland, C. E. et al. Thermal stability of colloidal InP nanocrystals: small inorganic ligands boost high-temperature photoluminescence. ACS Nano 8, 977–985 (2013).

    Article  Google Scholar 

  89. Panda, S. K., Hickey, S. G., Waurisch, C. & Eychmüller, A. Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications. J. Mater. Chem. 21, 11550–11555 (2011).

    Article  Google Scholar 

  90. Bae, W. K., Nam, M. K., Char, K. & Lee, S. Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1−xZnxS/ZnS nanocrystals. Chem. Mater. 20, 5307–5313 (2008).

    Article  Google Scholar 

  91. Tokito, S., Tanaka, H., Noda, K., Okada, A. & Taga, Y. Thermal stability in oligomeric triphenylamine/tris(8-quinolinolato) aluminum electroluminescent devices. Appl. Phys. Lett. 70, 1929–1931 (1997).

    Article  Google Scholar 

  92. Fenter, P., Schreiber, F., Bulović, V. & Forrest, S. R. Thermally induced failure mechanisms of organic light emitting device structures probed by X-ray specular reflectivity. Chem. Phys. Lett. 277, 521–526 (1997).

    Article  Google Scholar 

  93. Lee, J. B. & Subramanian, V. Weave patterned organic transistors on fiber for E-textiles. IEEE Trans. Electron Devices 52, 269–275 (2005).

    Article  Google Scholar 

  94. Azrain, M. M., Omar, G., Mansor, M. R., Fadzullah, S. H. S. M. & Lim, L. M. Failure mechanism of organic light emitting diodes (OLEDs) induced by hygrothermal effect. Opt. Mater. 91, 85–92 (2019).

    Article  Google Scholar 

  95. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  Google Scholar 

  96. Wang, R. et al. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 9, 1130–1143 (2016).

    Article  Google Scholar 

  97. Kim, H. et al. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 9, 4893 (2018).

    Article  Google Scholar 

  98. Sandanayaka, A. S. D. et al. Indication of current-injection lasing from an organic semiconductor. Appl. Phys. Express 12, 061010 (2019).

    Article  Google Scholar 

  99. Albahrani, S. M. B. et al. Quantum dots to probe temperature and pressure in highly confined liquids. RSC Adv. 8, 22897–22908 (2018).

    Article  Google Scholar 

  100. Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2214–2117 (1997).

    Article  Google Scholar 

  101. Lu, C.-Y., Chang, S.-W., Chuang, S. L., Germann, T. D. & Bimberg, D. Metal-cavity surface-emitting microlaser at room temperature. Appl. Phys. Lett. 96, 251101 (2010).

    Article  Google Scholar 

  102. Tischler, J. R., Bradley, M. S., Bulović, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

    Article  Google Scholar 

  103. Tawara, T., Gotoh, H., Akasaka, T., Kobayashi, N. & Saitoh, T. Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors. Appl. Phys. Lett. 83, 830–832 (2003).

    Article  Google Scholar 

  104. Wang, L. et al. Red, green, and blue microcavity quantum dot light-emitting devices with narrow line widths. ACS Appl. Nano Mater. 3, 5301–5310 (2020).

    Article  Google Scholar 

  105. Nakamura, S. et al. InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets. Jpn J. Appl. Phys. 35, L217–L220 (1996).

    Article  Google Scholar 

  106. Bulman, G. E. et al. Pulsed operation lasing in a cleaved-facet InGaN/GaN MQW SCH laser grown on 6H-SiC. Electron. Lett. 33, 1556–1557 (1997).

    Article  Google Scholar 

  107. McGehee, M. D. & Heeger, A. J. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 12, 1655–1668 (2000).

    Article  Google Scholar 

  108. Fu, Y. & Zhai, T. Distributed feedback organic lasing in photonic crystals. Front. Optoelectron. 13, 18–34 (2020).

    Article  Google Scholar 

  109. Shyh, W. Principles of distributed feedback and distributed Bragg-reflector lasers. IEEE J. Quantum Electron. 10, 413–427 (1974).

    Article  Google Scholar 

  110. Karnutsch, C. et al. Low threshold blue conjugated polymer lasers with first- and second-order distributed feedback. Appl. Phys. Lett. 89, 201108 (2006).

    Article  Google Scholar 

  111. Bjorkholm, J. E. & Shank, C. V. Higher‐order distributed feedback oscillators. Appl. Phys. Lett. 20, 306–308 (1972).

    Article  Google Scholar 

  112. Henry, C., Kazarinov, R., Logan, R. & Yen, R. Observation of destructive interference in the radiation loss of second-order distributed feedback lasers. IEEE J. Quantum Electron. 21, 151–154 (1985).

    Article  Google Scholar 

  113. Dang, C. et al. Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films. Appl. Phys. Lett. 103, 171104 (2013).

    Article  Google Scholar 

  114. Signorini, R. et al. Facile production of up-converted quantum dot lasers. Nanoscale 3, 4109–4113 (2011).

    Article  Google Scholar 

  115. Amakali, T., Daniel, L. S., Uahengo, V., Dzade, N. Y. & de Leeuw, N. H. Structural and optical properties of ZnO thin films prepared by molecular precursor and sol–gel methods. Crystals 10, 132 (2020).

    Article  Google Scholar 

  116. Kim, H.-B. & Kim, J.-J. Diffusion mechanism of exciplexes in organic optoelectronics. Phys. Rev. Appl. 13, 024006 (2020).

    Article  Google Scholar 

  117. Moerland, R. J. & Hoogenboom, J. P. Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors. Optica 3, 112–117 (2016).

    Article  Google Scholar 

  118. Reufer, M. et al. Low-threshold polymeric distributed feedback lasers with metallic contacts. Appl. Phys. Lett. 84, 3262–3264 (2004).

    Article  Google Scholar 

  119. Jing, P. et al. Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode. Sci. Rep. 5, 12499 (2015).

    Article  Google Scholar 

  120. Seo, J.-T. et al. Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode. ACS Nano 8, 12476–12482 (2014).

    Article  Google Scholar 

  121. Shayesteh, M. R. Design and analysis of an electrically pumped microcavity organic laser device. Electron. Mater. Lett. 13, 207–213 (2017).

    Article  Google Scholar 

  122. Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    Article  Google Scholar 

  123. Kozlov, V. G., Bulović, V., Burrows, P. E. & Forrest, S. R. Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362–364 (1997).

    Article  Google Scholar 

  124. Gaufrès, E. et al. Optical gain in carbon nanotubes. Appl. Phys. Lett. 96, 231105 (2010).

    Article  Google Scholar 

  125. Graf, A. et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat. Mater. 16, 911–917 (2017).

    Article  Google Scholar 

  126. Saliba, M. et al. Structured organic-inorganic perovskite toward a distributed feedback laser. Adv. Mater. 28, 923–929 (2016).

    Article  Google Scholar 

  127. Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P. & Giebink, N. C. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photon. 11, 784–788 (2017).

    Article  Google Scholar 

  128. Wang, Y.-C. et al. Flexible organometal–halide perovskite lasers for speckle reduction in imaging projection. ACS Nano 13, 5421–5429 (2019).

    Article  Google Scholar 

  129. Adachi, M. M. et al. Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 6, 8694 (2015).

    Article  Google Scholar 

  130. Garcia-Santamaria, F. et al. Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core–shell interface. Nano Lett. 11, 687–693 (2011).

    Article  Google Scholar 

  131. Nasilowski, M., Spinicelli, P., Patriarche, G. & Dubertret, B. Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield. Nano Lett. 15, 3953–3958 (2015).

    Article  Google Scholar 

  132. Park, Y.-S., Lim, J., Makarov, N. S. & Klimov, V. I. Effect of interfacial alloying versus ‘volume scaling’ on Auger recombination in compositionally graded semiconductor quantum dots. Nano Lett. 17, 5607–5613 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

V.I.K. and H.J. were supported by the Laboratory Directed Research and Development (LDRD) programme at Los Alamos National Laboratory (LANL) under projects 20200213DR and 20210176ER, respectively. N.A. acknowledges support by a LANL Director’s Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor I. Klimov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Daniel Vanmaekelbergh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H., Ahn, N. & Klimov, V.I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photon. 15, 643–655 (2021). https://doi.org/10.1038/s41566-021-00827-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00827-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing