Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrated optical frequency comb technologies

Abstract

Optical frequency combs offer an unrivalled degree of frequency measurement precision that underpins the advance of modern technology in both fundamental science and commercial contexts. Recent progress in integrated photonics provides an attractive route to realize optical frequency comb sources in a compact, low-cost and energy-efficient manner by leveraging tightly-confined waveguide platforms and wafer-scale mass-manufacturing in photonic foundries, potentially revolutionizing the fields of information processing, time–frequency metrology and sensing. In this Review Article, we comprehensively examine the strategies for optical frequency comb generation in integrated photonics and provide detailed appraisals of those strategies in the context of prospective applications. The progress of high-level integration of optical frequency combs in photonic integrated circuits is summarized and a roadmap is proposed for transferring advanced optical frequency comb systems from the laboratory to the wider world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the evolution of integrated OFC technologies.
Fig. 2: Integrated SMLL technologies.
Fig. 3: Integrated nonlinear OFC technologies.
Fig. 4: Current status of key metrics and properties of integrated OFC technologies.
Fig. 5: Current status of OFC integration in PICs.

Similar content being viewed by others

References

  1. Hargrove, L. E., Fork, R. L. & Pollack, M. A. Locking of He–Ne laser modes induced by synchronous intracavity modulation. Appl. Phys. Lett. 5, 4 (1964).

    Article  ADS  Google Scholar 

  2. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, aay3676 (2020).

    Article  Google Scholar 

  3. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  4. Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020).

    Article  ADS  Google Scholar 

  5. Ye, J., Schnatz, H. & Hollberg, L. W. Optical frequency combs: from frequency metrology to optical phase control. IEEE J. Sel. Top. Quantum Electron. 9, 1041–1058 (2003).

    Article  ADS  Google Scholar 

  6. Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).

    Article  Google Scholar 

  7. Beloy, K. et al. Frequency ratio measurements with 18-digit accuracy using a network of optical clocks. Nature 591, 564–569 (2021).

    Article  ADS  Google Scholar 

  8. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  9. Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    Article  ADS  Google Scholar 

  10. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  Google Scholar 

  11. Wang, B. et al. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl. 10, 2047–7538 (2021).

    Google Scholar 

  12. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  ADS  Google Scholar 

  13. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  ADS  Google Scholar 

  14. Carlson, D. R. et al. Photonic-chip supercontinuum with tailored spectra for counting optical frequencies. Phys. Rev. Appl. 8, 014027 (2017).

    Article  ADS  Google Scholar 

  15. Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    Article  ADS  Google Scholar 

  16. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 15, 346–353 (2021).

    Article  ADS  Google Scholar 

  17. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  18. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2018).

    Article  ADS  Google Scholar 

  19. Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

    Article  ADS  Google Scholar 

  20. Bowers, J. E., Morton, P. A., Mar, A. & Corzine, S. W. Actively mode-locked semiconductor lasers. IEEE J. Quantum Electron. 25, 1426–1439 (1989).

    Article  ADS  Google Scholar 

  21. Sato, K., Ishii, H., Kotaka, I., Kondo, Y. & Yamamoto, M. Frequency range extension of actively mode-locked lasers integrated with electroabsorption modulators using chirped gratings. IEEE J. Sel. Top. Quantum Electron. 3, 250–255 (1997).

    Article  ADS  Google Scholar 

  22. Derickson, D. J. et al. Short pulse generation using multisegment mode-locked semiconductor lasers. IEEE J. Quantum Electron. 28, 2186–2202 (1992).

    Article  ADS  Google Scholar 

  23. Liu, S. et al. Synchronized operation of a monolithically integrated AWG-based multichannel harmonically mode-locked laser. In Proc. Optical Fiber Communication Conference paper W4H.4 (Optical Society of America, 2016); https://doi.org/10.1364/OFC.2016.W4H.4

  24. Chen, Y. K., Wu, M. C., Tanbun‐Ek, T., Logan, R. A. & Chin, M. A. Subpicosecond monolithic colliding‐pulse mode‐locked multiple quantum well lasers. Appl. Phys. Lett. 58, 1253–1255 (1991).

    Article  ADS  Google Scholar 

  25. Kurczveil, G., Seyedi, M. A., Liang, D., Fiorentino, M. & Beausoleil, R. G. Error-free operation in a hybrid-silicon quantum dot comb laser. IEEE Photonics Technol. Lett. 30, 71–74 (2018).

    Article  ADS  Google Scholar 

  26. Liu, S. et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron. Lett. 54, 432–433 (2018).

    Article  ADS  Google Scholar 

  27. Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    Article  ADS  Google Scholar 

  28. Lu, Z. G. et al. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt. Express 16, 10835–10840 (2008).

    Article  ADS  Google Scholar 

  29. Khurgin, J. B., Dikmelik, Y., Hugi, A. & Faist, J. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. Appl. Phys. Lett. 104, 081118 (2014).

    Article  ADS  Google Scholar 

  30. Piccardo, M. et al. Frequency combs induced by phase turbulence. Nature 582, 360–364 (2020).

    Article  ADS  Google Scholar 

  31. Tucker, R. S. et al. 40 GHz active mode-locking in a 1.5 μm monolithic extended-cavity laser. Electron. Lett. 25, 621–622 (1989).

    Article  ADS  Google Scholar 

  32. Watanabe, H., Miyajima, T., Kuramoto, M., Ikeda, M. & Yokoyama, H. 10-W peak-power picosecond optical pulse generation from a triple section blue-violet self-pulsating laser diode. Appl. Phys. Express 3, 52701 (2010).

    Article  ADS  Google Scholar 

  33. Avrutin, E. A., Marsh, J. H. & Portnoi, E. L. Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications. IEE Proc. Optoelectron. 147, 251–278 (2000).

    Article  Google Scholar 

  34. Williams, K. A., Thompson, M. G. & White, I. H. Long-wavelength monolithic mode-locked diode lasers. New J. Phys. 6, 179 (2004).

    Article  ADS  Google Scholar 

  35. Marsh, J. H. & Hou, L. Mode-locked laser diodes and their monolithic integration. IEEE J. Sel. Top. Quantum Electron. 23, 1100611 (2017).

    Article  Google Scholar 

  36. Thompson, M. G., Rae, A. R., Xia, M., Penty, R. V. & White, I. H. InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009).

    Article  ADS  Google Scholar 

  37. Lelarge, F. et al. Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm. IEEE J. Sel. Top. Quantum Electron. 13, 111–123 (2007).

    Article  ADS  Google Scholar 

  38. Rafailov, E. U., Cataluna, M. A. & Sibbett, W. Mode-locked quantum-dot lasers. Nat. Photonics 1, 395–401 (2007).

    Article  ADS  Google Scholar 

  39. Nishi, K., Takemasa, K., Sugawara, M. & Arakawa, Y. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).

    Article  Google Scholar 

  40. Bimberg, D. Quantum dot based nanophotonics and nanoelectronics. Electron. Lett. 44, 168–171 (2008).

    Article  ADS  Google Scholar 

  41. Liu, S. et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity. Optica 6, 128–134 (2019).

    Article  ADS  Google Scholar 

  42. Wang, C. Y. et al. Mode-locked pulses from mid-infrared quantum cascade lasers. Opt. Express 17, 12929–12943 (2009).

    Article  ADS  Google Scholar 

  43. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  44. Hsieh, I.-W. et al. Supercontinuum generation in silicon photonic wires. Opt. Express 15, 15242–15249 (2007).

    Article  ADS  Google Scholar 

  45. Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–18 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Grelu, P. Nonlinear Optical Cavity Dynamics. Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers (Wiley, 2016); https://doi.org/10.1002/9783527686476

  47. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  ADS  Google Scholar 

  48. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  ADS  Google Scholar 

  50. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    Article  ADS  Google Scholar 

  51. Del’Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics 10, 516–520 (2016).

    Article  ADS  Google Scholar 

  52. Christensen, S., Ye, Z., Bache, M. & Company, V. T. Octave-spanning frequency comb generation in all-normal-dispersion silicon-rich silicon nitride waveguide. In Proc. Conference on Lasers and Electro-Optics paper STu3H.7 (Optical Society of America, 2020).

  53. Sinobad, M. et al. Mid-infrared supercontinuum generation in silicon-germanium all-normal dispersion waveguides. Opt. Lett. 45, 5008–5011 (2020).

    Article  ADS  Google Scholar 

  54. Johnson, A. R. et al. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 5117–5120 (2015).

    Article  ADS  Google Scholar 

  55. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  56. Peccianti, M. et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3, 765 (2012).

    Article  ADS  Google Scholar 

  57. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  58. Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    Article  ADS  Google Scholar 

  59. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics 11, 600–607 (2017).

    Article  Google Scholar 

  60. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  61. Weng, W. et al. Gain-switched semiconductor laser driven soliton microcombs. Nat. Commun. 12, 1425 (2021).

    Article  ADS  Google Scholar 

  62. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  63. Li, J., Lee, H., Chen, T. & Vahala, K. J. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109, 233901 (2012).

    Article  ADS  Google Scholar 

  64. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics 4, 41–45 (2010).

    Article  ADS  Google Scholar 

  65. Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

    Article  ADS  Google Scholar 

  66. Pu, M., Ottaviano, L., Semenova, E. & Yvind, K. Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3, 823–826 (2016).

    Article  ADS  Google Scholar 

  67. Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

    Article  ADS  Google Scholar 

  68. Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nat. Photonics 14, 57–62 (2020).

    Article  ADS  Google Scholar 

  69. He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    Article  ADS  Google Scholar 

  70. Jung, H. et al. Kerr solitons with tantala ring resonators. In Proc. Nonlinear Optics (NLO) paper NW2A.3 (Optical Society of America, 2019).

  71. Guidry, M. A. et al. Optical parametric oscillation in silicon carbide nanophotonics. Optica 7, 1139–1142 (2020).

    Article  ADS  Google Scholar 

  72. Ettabib, M. A. et al. Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide. Opt. Lett. 40, 4118–4121 (2015).

    Article  ADS  Google Scholar 

  73. Hausmann, B. J. M., Bulu, I., Venkataraman, V., Deotare, P. & Loncar, M. Diamond nonlinear photonics. Nat. Photonics 8, 369–374 (2014).

    Article  ADS  Google Scholar 

  74. Gai, X., Madden, S., Choi, D.-Y., Bulla, D. & Luther-Davies, B. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1 m−1 at 1550nm. Opt. Express 18, 18866–18874 (2010).

    Article  ADS  Google Scholar 

  75. Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 11, 1331 (2020).

    Article  ADS  Google Scholar 

  76. Okawachi, Y. et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica 7, 702–707 (2020).

    Article  ADS  Google Scholar 

  77. Parriaux, A., Hammani, K. & Millot, G. Electro-optic frequency combs. Adv. Opt. Photonics 12, 223–287 (2020).

    Article  ADS  Google Scholar 

  78. Ren, T. et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol. Lett. 31, 889–892 (2019).

    Article  ADS  Google Scholar 

  79. Kobayashi, T., Sueta, T., Cho, Y. & Matsuo, Y. High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator. Appl. Phys. Lett. 21, 341–343 (1972).

    Article  ADS  Google Scholar 

  80. Kourogi, M., Imai, K. & Widiyatomoko, B. Advances in electro-optic modulator based frequency combs. In Digest of the LEOS Summer Topical Meetings, 2005 133–134 (IEEE, 2005)

  81. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  Google Scholar 

  82. Buscaino, B., Kahn, J. M., Lončar, M. & Zhang, M. Design of efficient resonator-enhanced electro-optic frequency comb generators. J. Lightwave Technol. 38, 1400–1413 (2020).

    Article  ADS  Google Scholar 

  83. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article  ADS  Google Scholar 

  84. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    Article  ADS  Google Scholar 

  85. Liu, S. et al. Microwave pulse generation with a silicon dual-parallel modulator. J. Lightwave Technol. 38, 2134–2143 (2020).

    Article  ADS  Google Scholar 

  86. Diddams, S. A., Ma, L.-S., Ye, J. & Hall, J. L. Broadband optical frequency comb generation with a phase-modulated parametric oscillator. Opt. Lett. 24, 1747–1749 (1999).

    Article  ADS  Google Scholar 

  87. Chang, L. et al. Second order nonlinear photonic integrated platforms for optical signal processing. IEEE J. Sel. Top. Quantum Electron. 27, 5100111 (2020).

    Google Scholar 

  88. Bruch, A. W. et al. Pockels soliton microcomb. Nat. Photonics 15, 21–27 (2020).

    Article  ADS  Google Scholar 

  89. Bao, C. et al. Interleaved difference-frequency generation for microcomb spectral densification in the mid-infrared. Optica 7, 309–315 (2020).

    Article  ADS  Google Scholar 

  90. Chang, L. et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photon. Rev. 12, 1800149 (2018).

    Article  ADS  Google Scholar 

  91. Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics 11, 200–206 (2017).

    Article  ADS  Google Scholar 

  92. Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics 13, 494–499 (2019).

    Article  ADS  Google Scholar 

  93. Wang, Z. et al. A III-V-on-Si ultra-dense comb laser. Light Sci. Appl. 6, e16260 (2017).

    Article  Google Scholar 

  94. Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  ADS  Google Scholar 

  95. Zander, M. et al. High performance BH InAs/InP QD and InGaAsP/InP QW mode-locked lasers as comb and pulse sources. In Proc. Optical Fiber Communication Conference paper T3C.4 (Optical Society of America, 2020).

  96. Lu, Q. Y., Manna, S., Slivken, S., Wu, D. H. & Razeghi, M. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output. AIP Adv. 7, 045313 (2017).

    Article  ADS  Google Scholar 

  97. Jouy, P. et al. Dual comb operation of λ 8.2 μm quantum cascade laser frequency comb with 1 W optical power. Appl. Phys. Lett. 111, 141102 (2017).

    Article  ADS  Google Scholar 

  98. Hu, H. et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photonics 12, 469–473 (2018).

    Article  ADS  Google Scholar 

  99. Bao, C. et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett. 39, 6126–6129 (2014).

    Article  ADS  Google Scholar 

  100. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photonics 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  101. Kim, B. Y. et al. Turn-key, high-efficiency Kerr comb source. Opt. Lett. 44, 4475–4478 (2019).

    Article  ADS  Google Scholar 

  102. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  103. Di Domenico, G., Schilt, S. & Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 49, 4801–4807 (2010).

    Article  ADS  Google Scholar 

  104. Habruseva, T. et al. Optical linewidth of a passively mode-locked semiconductor laser. Opt. Lett. 34, 3307–3309 (2009).

    Article  ADS  Google Scholar 

  105. Lu, Z. G., Liu, J. R., Poole, P. J., Song, C. Y. & Chang, S. D. Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking. Opt. Express 26, 11909–11914 (2018).

    Article  ADS  Google Scholar 

  106. Burghoff, D. et al. Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs. Opt. Express 23, 1190–1202 (2015).

    Article  ADS  Google Scholar 

  107. Xu, X. et al. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source [Invited]. Photonics Res. 6, B30–B36 (2018).

    Article  Google Scholar 

  108. Tan, M. et al. RF and microwave photonic temporal signal processing with Kerr micro-combs. Adv. Phys. X 6, 1838946 (2021).

    Google Scholar 

  109. Haji, M. et al. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes. Opt. Express 20, 3268–3274 (2012).

    Article  ADS  Google Scholar 

  110. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics 14, 486–491 (2020).

    Article  ADS  Google Scholar 

  111. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  Google Scholar 

  112. Yi, X., Yang, Q.-F., Youl Yang, K. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    Article  ADS  Google Scholar 

  113. Liu, H. F., Arahira, S., Kunii, T. & Ogawa, Y. Tuning characteristics of monolithic passively mode-locked distributed Bragg reflector semiconductor lasers. IEEE J. Quantum Electron. 32, 1965–1975 (1996).

    Article  ADS  Google Scholar 

  114. Shang, C. et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica 8, 749–754 (2021).

    Article  ADS  Google Scholar 

  115. Norman, J. C., Jung, D., Wan, Y. & Bowers, J. E. Perspective: the future of quantum dot photonic integrated circuits. APL Photonics 3, 030901 (2018).

    Article  ADS  Google Scholar 

  116. Munoz, P. et al. Foundry developments toward silicon nitride photonics from visible to the mid-infrared. IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).

    Article  Google Scholar 

  117. Reimer, C. et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 28, 24452–24458 (2020).

    Article  ADS  Google Scholar 

  118. Advanced indium phosphide PDK for photonic integrated circuit design. Novus Light Technologies Today https://www.novuslight.com/advanced-indium-phosphide-pdk-for-photonic-integrated-circuit-design_N6729.html (2017).

  119. Smit, M., van der Tol, J. & Hill, M. Moore’s law in photonics. Laser Photon. Rev. 6, 1–13 (2012).

    Article  ADS  Google Scholar 

  120. Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34, 20–35 (2015).

    Article  ADS  Google Scholar 

  121. Margalit, N. et al. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 118, 220501 (2021).

    Article  ADS  Google Scholar 

  122. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  Google Scholar 

  123. Xiang, C. et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20–21 (2020).

    Article  ADS  Google Scholar 

  124. Park, H., Zhang, C., Tran, M. A. & Komljenovic, T. Heterogeneous silicon nitride photonics. Optica 7, 336–337 (2020).

    Article  ADS  Google Scholar 

  125. Murray, E. et al. Quantum photonics hybrid integration platform. Appl. Phys. Lett. 107, 171108 (2015).

    Article  ADS  Google Scholar 

  126. Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019).

    Article  ADS  Google Scholar 

  127. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  128. Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016).

    Article  Google Scholar 

  129. Guo, X., Quarterman, A. H., Wonfor, A., Penty, R. V. & White, I. H. Monolithically integrated tunable mode-locked laser diode source with individual pulse selection and post-amplification. Opt. Lett. 41, 4835–4838 (2016).

    Article  ADS  Google Scholar 

  130. Liu, S. et al. Synchronized 4 × 12 GHz hybrid harmonically mode-locked semiconductor laser based on AWG. Opt. Express 24, 9734–9740 (2016).

    Article  ADS  Google Scholar 

  131. Moscoso-Mártir, A. et al. Silicon photonics transmitter with SOA and semiconductor mode-locked laser. Sci. Rep. 7, 13857 (2017).

    Article  ADS  Google Scholar 

  132. Gong, Z., Liu, X., Xu, Y. & Tang, H. X. Near-octave lithium niobate soliton microcomb. Optica 7, 1275–1278 (2020).

    Article  ADS  Google Scholar 

  133. Bao, H. et al. Laser cavity-soliton microcombs. Nat. Photonics 13, 384–389 (2019).

    Article  ADS  Google Scholar 

  134. Srinivasan, S. et al. Hybrid silicon colliding-pulse mode-locked lasers with on-chip stabilization. IEEE J. Sel. Top. Quantum Electron. 21, 1101106 (2015).

    Article  Google Scholar 

  135. Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755–756 (2021).

    Article  ADS  Google Scholar 

  136. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics 6, 369–373 (2012).

    Article  ADS  Google Scholar 

  137. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  138. Brasch, V., Lucas, E., Jost, J. D., Geiselmann, M. & Kippenberg, T. J. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl. 6, e16202 (2017).

    Article  ADS  Google Scholar 

  139. Rueda, A., Sedlmeir, F., Kumari, M., Leuchs, G. & Schwefel, H. G. L. Resonant electro-optic frequency comb. Nature 568, 378–381 (2019).

    Article  ADS  Google Scholar 

  140. Pfeifle, J. et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics 8, 375–380 (2014).

    Article  ADS  Google Scholar 

  141. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  142. Ho, P. ‐T., Glasser, L. A., Ippen, E. P. & Haus, H. A. Picosecond pulse generation with a cw GaAlAs laser diode. Appl. Phys. Lett. 33, 241–242 (1978).

    Article  ADS  Google Scholar 

  143. Huang, X. et al. Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Appl. Phys. Lett. 78, 2825–2827 (2001).

    Article  ADS  Google Scholar 

  144. Koch, B. R., Fang, A. W., Cohen, O. & Bowers, J. E. Mode-locked silicon evanescent lasers. Opt. Express 15, 11225–11233 (2007).

    Article  ADS  Google Scholar 

  145. Morton, P. A. et al. Monolithic hybrid mode‐locked 1.3 μm semiconductor lasers. Appl. Phys. Lett. 56, 111–113 (1990).

    Article  ADS  Google Scholar 

  146. Wu, M. C. et al. Transform‐limited 1.4 ps optical pulses from a monolithic colliding‐pulse mode‐locked quantum well laser. Appl. Phys. Lett. 57, 759–761 (1990).

    Article  ADS  Google Scholar 

  147. Sato, K. 100 GHz optical pulse generation using Fabry-Perot laser under continuous wave operation. Electron. Lett. 37, 763–764(1) (2001).

    Article  ADS  Google Scholar 

  148. Meng, B. et al. Mid-infrared frequency comb from a ring quantum cascade laser. Optica 7, 162–167 (2020).

    Article  ADS  Google Scholar 

  149. Sato, K., Kotaka, I., Kondo, Y. & Yamamoto, M. Actively mode-locked strained-InGaAsP multiquantum-well lasers integrated with electroabsorption modulators and distributed Bragg reflectors. IEEE J. Sel. Top. Quantum Electron. 2, 557–564 (1996).

    Article  ADS  Google Scholar 

  150. Koch, B. R. et al. Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery. IEEE Photonics Technol. Lett. 19, 641–643 (2007).

    Article  ADS  Google Scholar 

  151. Tahvili, M. S. et al. Directional control of optical power in integrated InP/InGaAsP extended cavity mode-locked ring lasers. Opt. Lett. 36, 2462–2464 (2011).

    Article  ADS  Google Scholar 

  152. Guo, X. et al. Monolithically integrated selectable repetition-rate laser diode source of picosecond optical pulses. Opt. Lett. 39, 4144–4147 (2014).

    Article  ADS  Google Scholar 

  153. Villares, G. et al. On-chip dual-comb based on quantum cascade laser frequency combs. Appl. Phys. Lett. 107, 251104 (2015).

    Article  ADS  Google Scholar 

  154. Kemal, J. N. et al. Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. Opt. Express 27, 31164–31175 (2019).

    Article  ADS  Google Scholar 

  155. Van Gasse, K. et al. III-V-on-silicon mode-locked lasers with 1-GHz line spacing for dual-comb spectroscopy. In Proc. Conference on Lasers and Electro-Optics paper SF1G.5 (Optical Society of America, 2020).

  156. Davenport, M. L., Liu, S. & Bowers, J. E. Integrated heterogeneous silicon/III-V mode-locked lasers. Photonics Res. 6, 468–478 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Keeler, T. Kippenberg, K. Vahala, S. Papp, K. Srinivasan, D. Liang, A. Boes, W. W. Chow, T. Morin and X. Zhang for discussions and assistance. We would also like to thank many colleagues with whom we have learned about the field of optical frequency combs. We acknowledge support from the Defense Advanced Research Projects Agency (DARPA) under the DODOS (HR0011-15-C-055) and LUMOS (HR001-20-2-0044) programs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Chang or John E. Bowers.

Ethics declarations

Competing interests

J.E.B. is a shareholder in two silicon photonics companies, Quintessent and Nexus Photonics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks David Moss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Liu, S. & Bowers, J.E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022). https://doi.org/10.1038/s41566-021-00945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00945-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing