Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light

Abstract

In a non-reciprocal optical amplifier, gain depends on whether the light propagates forwards or backwards through the device. Typically, one requires either the magneto-optical effect, temporal modulation or optical nonlinearity to break reciprocity. By contrast, here we demonstrate non-reciprocal amplification of fibre-guided light using Raman gain provided by spin-polarized atoms that are coupled to the nanofibre waist of a tapered fibre section. The non-reciprocal response originates from the propagation-direction-dependent local polarization of the nanofibre-guided mode in conjunction with polarization-dependent atom–light coupling. We show that this novel mechanism can also be implemented without an external magnetic field and that it allows us to fully control the direction of amplification via the atomic spin state. Our results may simplify the construction of complex optical networks. Moreover, by using other suitable quantum emitters, our scheme could be implemented in photonic integrated circuits and circuit quantum electrodynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of experimental setup.
Fig. 2: Non-reciprocal Raman gain.
Fig. 3: Magnetic-field-free non-reciprocal Raman gain.

Similar content being viewed by others

Data availability

Source data for Figs. 2 and 3 are available in an open-access repository39.

References

  1. Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717 (2004).

    Article  ADS  Google Scholar 

  2. Jalas, D. et al. What is–and what is not—an optical isolator. Nat. Photon. 7, 579–582 (2013).

    Article  Google Scholar 

  3. Asadchy, V. S., Mirmoosa, M. S., Díaz-Rubio, A., Fan, S. & Tretyakov, S. A. Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE 108, 1684–1727 (2020).

    Article  Google Scholar 

  4. Caloz, C. et al. Electromagnetic nonreciprocity. Phys. Rev. Appl. 10, 047001 (2018).

    Article  ADS  Google Scholar 

  5. Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

    Article  Google Scholar 

  6. Fan, S., Shi, Y. & Lin, Q. Nonreciprocal photonics without magneto-optics. IEEE Antennas Wireless Propag. Lett. 17, 1948–1952 (2018).

    Article  Google Scholar 

  7. Khurgin, J. B. Non-reciprocal propagation versus non-reciprocal control. Nat. Photon. 14, 711 (2020).

    Article  ADS  Google Scholar 

  8. Kittlaus, E. A. Reply to ‘Non-reciprocal propagation versus non-reciprocal control’. Nat. Photon. 14, 712 (2020).

    Article  ADS  Google Scholar 

  9. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  Google Scholar 

  10. Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015).

    Google Scholar 

  11. Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577–1580 (2016).

    Article  Google Scholar 

  12. Lin, G. et al. Nonreciprocal amplification with four-level hot atoms. Phys. Rev. Lett. 123, 033902 (2019).

    Article  ADS  Google Scholar 

  13. Ruesink, F., Miri, M.-A., Alu, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    Article  ADS  Google Scholar 

  14. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

  15. Shen, Z. et al. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun. 9, 1797 (2018).

    Article  ADS  Google Scholar 

  16. Otterstrom, N. T. et al. Resonantly enhanced nonreciprocal silicon Brillouin amplifier. Optica 6, 1117–1123 (2019).

    Article  Google Scholar 

  17. Krause, M., Müller, J. & Brinkmeyer, E. Measurement of nonreciprocal stimulated Raman scattering in silicon photonic wires. In The 9th International Conference on Group IV Photonics (GFP) 6–8 (IEEE, 2012).

  18. Lawrence, M. & Dionne, J. A. Nanoscale nonreciprocity via photon-spin-polarized stimulated Raman scattering. Nat. Commun. 10, 3297 (2019).

    Article  ADS  Google Scholar 

  19. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014).

    Article  Google Scholar 

  20. Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun. 5, 5713 (2014).

    Article  ADS  Google Scholar 

  21. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  Google Scholar 

  22. Vetsch, E. et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010).

    Article  ADS  Google Scholar 

  23. Østfeldt, C. et al. Dipole force free optical control and cooling of nanofiber trapped atoms. Opt. Lett. 42, 4315–4318 (2017).

    Article  Google Scholar 

  24. Markussen, S. B. et al. Measurement and simulation of atomic motion in nanoscale optical trapping potentials. Appl. Phys. B 126, 73 (2020).

  25. Brion, E., Pedersen, L. H. & Mølmer, K. Adiabatic elimination in a lambda system. J. Phys. A 40, 1033 (2007).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Meng, Y., Dareau, A., Schneeweiss, P. & Rauschenbeutel, A. Near-ground-state cooling of atoms optically trapped 300 nm away from a hot surface. Phys. Rev. X 8, 031054 (2018).

    Google Scholar 

  27. Dareau, A., Meng, Y., Schneeweiss, P. & Rauschenbeutel, A. Observation of ultrastrong spin-motion coupling for cold atoms in optical microtraps. Phys. Rev. Lett. 121, 253603 (2018).

    Article  ADS  Google Scholar 

  28. Guerin, W., Michaud, F. & Kaiser, R. Mechanisms for lasing with cold atoms as the gain medium. Phys. Rev. Lett. 101, 093002 (2008).

    Article  ADS  Google Scholar 

  29. Braak, D. & Mannhart, J. Fermi’s golden rule and the second law of thermodynamics. Found. Phys. 50, 1509–1540 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  30. Loos, S. A. M. & Klapp, S. H. L. Irreversibility, heat and information flows induced by non-reciprocal interactions. New J. Phys. 22, 123051 (2020).

    Article  MathSciNet  ADS  Google Scholar 

  31. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y. & Nori, F. Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017).

    MathSciNet  MATH  Google Scholar 

  33. Kien, F. L., Liang, J., Hakuta, K. & Balykin, V. Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber. Opt. Commun. 242, 445–455 (2004).

    Article  Google Scholar 

  34. Schlosser, N., Reymond, G. & Grangier, P. Collisional blockade in microscopic optical dipole traps. Phys. Rev. Lett. 89, 023005 (2002).

    Article  ADS  Google Scholar 

  35. Vetsch, E. et al. Nanofiber-based optical trapping of cold neutral atoms. IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).

    Article  ADS  Google Scholar 

  36. Sayrin, C., Clausen, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms. Optica 2, 353–356 (2015).

    Article  Google Scholar 

  37. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  38. Johansson, R. J., Nation, P. D. & Nori, F. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234–1240 (2013).

    Article  Google Scholar 

  39. Pucher, S., Liedl, C., Jin, S., Rauschenbeutel, A. & Schneeweiss, P. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Zenodo https://zenodo.org/record/6242113 (2022).

Download references

Acknowledgements

We thank J. Fink, A. Husakou, F. Tebbenjohanns and J. Volz for stimulating discussions and helpful comments. We acknowledge funding by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the Federal Ministry of Education and Research. Moreover, financial support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 800942 (ErBeStA) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and S.P. adapted and extended the setup for this experiment and carried out the measurements. S.J. assisted in the early stages of the experiments. Data were analysed and modelled by C.L., S.P. and P.S. The experiment was conceived and supervised by A.R. and P.S. All the authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Philipp Schneeweiss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Kanu Sinha, David Wilkowski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Discussion and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pucher, S., Liedl, C., Jin, S. et al. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Nat. Photon. 16, 380–383 (2022). https://doi.org/10.1038/s41566-022-00987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-00987-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing