Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stable coherent terahertz synchrotron radiation from controlled relativistic electron bunches

Abstract

Relativistic electron bunches used in synchrotron light sources are complex media, in which patterns might form spontaneously. These spatial structures were studied over the past decades for very practical reasons. The patterns, which spontaneously appear during an instability, increase the terahertz radiation power by factors exceeding 10,0001,2. However, their irregularity1,2,3,4,5,6,7 largely prevented applications of this powerful source. Here we show that principles from chaos control theory8,9,10 allow us to generate regular spatio-temporal patterns, stabilizing the emitted terahertz power. Regular unstable solutions are expected to coexist with the undesired irregular solutions, and may thus be controllable using feedback control. We demonstrate the stabilization of such regular solutions in the Synchrotron SOLEIL storage ring. Operation of these controlled unstable solutions enables new designs of high-charge and stable synchrotron radiation sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Storage ring synchrotron facilities, and the microbunching instability.
Fig. 2: Control of the microbunching instability, experimental set-up and results expected numerically.
Fig. 3: Experimental results on the feedback control.
Fig. 4: Evolution of the coherent terahertz pulse shapes with and without control.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abo-Bakr, M., Feikes, J., Holldack, K., Wüstefeld, G. & Hübers, H.-W. Steady-state far-infrared coherent synchrotron radiation detected at BESSY II. Phys. Rev. Lett. 88, 254801 (2002).

    Article  ADS  Google Scholar 

  2. Byrd, J. M. et al. Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring. Phys. Rev. Lett. 89, 224801 (2002).

    Article  ADS  Google Scholar 

  3. Venturini, M. & Warnock, R. Bursts of coherent synchrotron radiation in electron storage rings: a dynamical model. Phys. Rev. Lett. 89, 224802 (2002).

    Article  ADS  Google Scholar 

  4. Roussel, E. et al. Microbunching instability in relativistic electron bunches: direct observations of the microstructures using ultrafast YBCO detectors. Phys. Rev. Lett. 113, 094801 (2014).

    Article  ADS  Google Scholar 

  5. Roussel, E. et al. Observing microscopic structures of a relativistic object using a time-stretch strategy. Sci. Rep. 5, 10330 (2015).

    Article  ADS  Google Scholar 

  6. Brosi, M. et al. Fast mapping of terahertz bursting thresholds and characteristics at synchrotron light sources. Phys. Rev. Accel. Beams 19, 110701 (2016).

    Article  ADS  Google Scholar 

  7. Billinghurst, B. E. et al. Longitudinal bunch dynamics study with coherent synchrotron radiation. Phys. Rev. Accel. Beams 19, 020704 (2016).

    Article  ADS  Google Scholar 

  8. Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  9. Shinbrot, T., Grebogi, C., Yorke, J. A. & Ott, E. Using small perturbations to control chaos. Nature 363, 411–417 (1993).

    Article  ADS  Google Scholar 

  10. Pyragas, K. Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992).

    Article  ADS  Google Scholar 

  11. Stupakov, G. & Heifets, S. Beam instability and microbunching due to coherent synchrotron radiation. Phys. Rev. Accel. Beams 5, 054402 (2002).

    Article  ADS  Google Scholar 

  12. Sannibale, F. et al. A model describing stable coherent synchrotron radiation in storage rings. Phys. Rev. Lett. 93, 094801 (2004).

    Article  ADS  Google Scholar 

  13. Warnock, R. L. Study of bunch instabilities by the nonlinear Vlasov–Fokker–Planck equation. Nucl. Instrum. Meth. Phys. Res. A 561, 186–194 (2006).

    Article  ADS  Google Scholar 

  14. Shimada, M. et al. Transverse-longitudinal coupling effect in laser bunch slicing. Phys. Rev. Lett. 103, 144802 (2009).

    Article  ADS  Google Scholar 

  15. Feikes, J. et al. Metrology light source: the first electron storage ring optimized for generating coherent THz radiation. Phys. Rev. Accel. Beams 14, 030705 (2011).

    Article  ADS  Google Scholar 

  16. Martin, I., Rehm, G., Thomas, C. & Bartolini, R. Experience with low-alpha lattices at the diamond light source. Phys Rev. Accel. Beams 14, 040705 (2011).

    Article  ADS  Google Scholar 

  17. Barros, J. et al. Coherent synchrotron radiation for broadband terahertz spectroscopy. Rev. Sci. Instrum. 84, 033102 (2013).

    Article  ADS  Google Scholar 

  18. Tammaro, S. et al. High density terahertz frequency comb produced by coherent synchrotron radiation. Nat. Commun. 6, 7733 (2015).

    Article  ADS  Google Scholar 

  19. Steinmann, J. L. et al. Frequency-comb spectrum of periodic-patterned signals. Phys. Rev. Lett. 117, 174802 (2016).

    Article  ADS  Google Scholar 

  20. Boccaletti, S., Grebogi, C., Lai, Y.-C., Mancini, H. & Maza, D. The control of chaos: theory and applications. Phys. Rep. 329, 103–197 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  21. Bielawski, S. et al. Feedback control of dynamical instabilities in classical lasers and FELs. In Proc. 27th International Free Electron Laser Conference 391–397 (JaCoW, 2005).

  22. Ahlborn, A. & Parlitz, U. Stabilizing unstable steady states using multiple delay feedback control. Phys. Rev. Lett. 93, 264101 (2004).

    Article  ADS  Google Scholar 

  23. Roussel, E., Evain, C., Szwaj, C. & Bielawski, S. Microbunching instability in storage rings: link between phase-space structure and terahertz coherent synchrotron radiation radio-frequency spectra. Phys. Rev. Accel. Beams 17, 010701 (2014).

    Article  ADS  Google Scholar 

  24. Szwaj, C. et al. High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses. Rev. Sci. Instrum. 87, 103111 (2016).

    Article  ADS  Google Scholar 

  25. Kuske, P. Investigation of the temporal structure of CSR-bursts at BESSY II. In Proc. PAC09 4682–4684 (JaCoW, 2009).

  26. Evain, C. et al. Direct observation of spatiotemporal dynamics of short electron bunches in storage rings. Phys. Rev. Lett. 118, 054801 (2017).

    Article  ADS  Google Scholar 

  27. Byrd, J. M. et al. Laser seeding of the storage-ring microbunching instability for high-power coherent terahertz radiation. Phys. Rev. Lett. 97, 074802 (2006).

    Article  ADS  Google Scholar 

  28. Cai, Y. Linear theory of microwave instability in electron storage rings. Phys. Rev. Accel. Beams 14, 061002 (2011).

    Article  ADS  Google Scholar 

  29. Schönfeldt, P., Brosi, M., Schwarz, M., Steinmann, J. L. & Müller, A.-S. Parallelized Vlasov–Fokker–Planck solver for desktop personal computers. Phys. Rev. Accel. Beams 20, 030704 (2017).

    Article  ADS  Google Scholar 

  30. Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photon. 11, 341–351 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the LABEX CEMPI (ANR-11-LABX-0007) and the Equipex Flux (ANR-11-EQPX-0017), as well as by the Ministry of Higher Education and Research, Hauts de France council and the European Regional Development Fund through the Contrat de Projets Etat-Region (CPER Photonics for Society P4S). The project used HPC resources from GENCI TGCC/IDRIS (i2016057057, A0040507057).

Author information

Authors and Affiliations

Authors

Contributions

S.B. and C.E. carried out the numerical simulations. C.E., S.B. and C.S. led the experimental realization. C.E., S.B. and J.R. developed the FPGA software. The experiments at SOLEIL were designed and performed by M.-A.T. (ring configuration and operation), F.R. (RF system configuration and settings), M.L. and N.H. (interlock and diagnostic systems), J.-B.B. and P.R. (AILES beamline), and M.L., E.R., S.B., C.E. and C.S. (electro-optics sampling detection system and feedback system). The experimental data were analysed by C.S. and C.E. All of the authors participated in the redaction.

Corresponding author

Correspondence to C. Evain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures.

Supplementary Video 1

Video demonstrating feedback control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evain, C., Szwaj, C., Roussel, E. et al. Stable coherent terahertz synchrotron radiation from controlled relativistic electron bunches. Nat. Phys. 15, 635–639 (2019). https://doi.org/10.1038/s41567-019-0488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0488-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing