Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sub-femtosecond electron transport in a nanoscale gap

Abstract

The strong fields associated with few-cycle pulses can drive highly nonlinear phenomena, allowing the direct control of electrons in condensed matter systems. In this context, by employing near-infrared single-cycle pulse pairs, we measure interferometric autocorrelations of the ultrafast currents induced by optical field emission at the nanogap of a single plasmonic nanocircuit. The dynamics of this ultrafast electron nanotransport depends on the precise temporal field profile of the optical driving pulse. Current autocorrelations are acquired with sub-femtosecond temporal resolution as a function of both pulse delay and absolute carrier-envelope phase. Quantitative modelling of the experiments enables us to monitor the spatiotemporal evolution of the electron density and currents induced in the system and to elucidate the physics underlying the electron transfer driven by strong optical fields in plasmonic gaps. Specifically, we clarify the interplay between the carrier-envelope phase of the driving pulse, plasmonic resonance and quiver motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Driving ultrafast currents in a nanocircuit with single-cycle near-infrared pulses.
Fig. 2: Interferometric current autocorrelations dependent on the CEP of the driving pulses.
Fig. 3: Time-dependent calculations of the current density driven by the electric field of the laser pulses.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code and algorithms that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nat. Photon. 4, 33–36 (2010).

    Article  ADS  Google Scholar 

  2. Herink, G., Solli, D., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    Article  ADS  Google Scholar 

  3. Dombi, P., Krausz, F. & Farkas, G. Ultrafast dynamics and carrier-envelope phase sensitivity of multiphoton photoemission from metal surfaces. J. Mod. Opt. 53, 163–172 (2006).

    Article  ADS  Google Scholar 

  4. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  5. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2012).

    Article  ADS  Google Scholar 

  6. Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photon. 8, 37–42 (2013).

    Article  ADS  Google Scholar 

  7. Paasch-Colberg, T. et al. Solid-state light-phase detector. Nat. Photon. 8, 214–218 (2014).

    Article  ADS  Google Scholar 

  8. Cocker, T. L. et al. An ultrafast terahertz scanning tunneling microscope. Nat. Photon. 7, 620–623 (2013).

    Article  ADS  Google Scholar 

  9. Gao, C.-Z. et al. Strong-field effects in the photoemission spectrum of the C60 fullerene. Phys. Rev. A 93, 022506 (2016).

    Article  ADS  Google Scholar 

  10. Echternkamp, K. E. et al. Strong-field photoemission in nanotip near-fields: from quiver to sub-cycle electron dynamics. Appl. Phys. B 122, 80 (2016).

    Article  ADS  Google Scholar 

  11. Dombi, P. et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013).

    Article  ADS  Google Scholar 

  12. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    Article  ADS  Google Scholar 

  13. Ahn, B. et al. Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime. APL Photon. 2, 036104 (2017).

    Article  ADS  Google Scholar 

  14. Vogelsang, J., Hergert, G., Wang, D., Groß, P. & Lienau, C. Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy. Light Sci. Appl. 7, 4–11 (2018).

    Article  Google Scholar 

  15. Jelic, V. et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nat. Phys. 13, 591–598 (2017).

    Article  Google Scholar 

  16. Yoshioka, K. et al. Tailoring single-cycle near field in a tunnel junction with carrier-envelope phase-controlled terahertz electric fields. Nano Lett. 18, 5198–5204 (2018).

    Article  ADS  Google Scholar 

  17. Yoshioka, K., Katayama, I., Minami, Y., Kitajima, M. & Yoshida, S. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat. Photon. 10, 762–765 (2016).

    Article  ADS  Google Scholar 

  18. Rácz, P. et al. Measurement of nanoplasmonic field enhancement with ultrafast photoemission. Nano Lett. 17, 1181–1186 (2017).

    Article  ADS  Google Scholar 

  19. Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photon. 10, 667–670 (2016).

    Article  ADS  Google Scholar 

  20. Putnam, W. P., Hobbs, R. G., Keathley, P. D., Berggren, K. K. & Kärtner, F. X. Optical-field-controlled photoemission from plasmonic nanoparticles. Nat. Phys. 13, 335–339 (2017).

    Article  Google Scholar 

  21. Savage, K. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    Article  ADS  Google Scholar 

  22. Esteban, R. et al. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discuss. 178, 151–183 (2015).

    Article  ADS  Google Scholar 

  23. Wan, Y., Wubs, M. & Mortensen, N. A. Projected dipole model for quantum plasmonics. Phys. Rev. Lett. 115, 137403 (2015).

    Article  ADS  Google Scholar 

  24. Zhu, W. et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016).

    Article  ADS  Google Scholar 

  25. Hanke, T. et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12, 992–996 (2012).

    Article  ADS  Google Scholar 

  26. Aguirregabiria, G. et al. Dynamics of electron-emission currents in plasmonic gaps induced by strong fields. Faraday Discuss. 214, 147–157 (2019).

    Article  ADS  Google Scholar 

  27. Brida, D., Krauss, G., Sell, A. & Leitenstorfer, A. Ultrabroadband Er:fiber lasers. Laser Photon. Rev. 8, 409–428 (2014).

    Article  ADS  Google Scholar 

  28. Krauss, G. et al. All-passive phase locking of a compact Er:fiber laser system. Opt. Lett. 36, 540–542 (2011).

    Article  ADS  Google Scholar 

  29. Marques, M. A. L. & Gross, E. K. U. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 55, 427–455 (2004).

    Article  ADS  Google Scholar 

  30. Krüger, M., Lemell, C., Wachter, G., Burgdörfer, J. & Hommelhoff, P. Attosecond physics phenomena at nanometric tips. J. Phys. B 51, 172001 (2018).

    Article  ADS  Google Scholar 

  31. Lemell, C., Tong, X., Krausz, F. & Burgdörfer, J. Electron emission from metal surfaces by ultrashort pulses: determination of the carrier-envelope phase. Phys. Rev. Lett. 90, 076403 (2003).

    Article  ADS  Google Scholar 

  32. Wachter, G. et al. Electron rescattering at metal nanotips induced by ultrashort laser pulses. Phys. Rev. B 86, 035402 (2012).

    Article  ADS  Google Scholar 

  33. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    Article  ADS  Google Scholar 

  34. Dombi, P. et al. Observation of few-cycle, strong-field phenomena in surface plasmon fields. Opt. Express 23, 24206–24212 (2010).

    Article  ADS  Google Scholar 

  35. Birge, J. R., Ell, R. & Kärtner, F. X. Two-dimensional spectral shearing interferometry for few-cycle pulse characterization. Opt. Lett. 31, 2063–2065 (2006).

    Article  ADS  Google Scholar 

  36. Gunnarsson, O. & Lundqvist, B. I. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13, 4274–4298 (1976).

    Article  ADS  Google Scholar 

  37. Lang, N. D. & Kohn, W. Theory of metal surfaces: work function. Phys. Rev. B 3, 1215–1223 (1971).

    Article  ADS  Google Scholar 

  38. Nguyen, H. S., Bandrauk, A. D. & Ullrich, C. A. Asymmetry of above-threshold ionization of metal clusters in two-color laser fields: a time-dependent density-functional study. Phys. Rev. A 69, 063415 (2004).

    Article  ADS  Google Scholar 

  39. Zuloaga, J., Prodan, E. & Nordlander, P. Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4, 5269–5276 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

D.B. and A.L. acknowledge support of the Deutsche Forschungsgemeinschaft through the Emmy Noether programme (BR 5030/1-1) and the collaborative research centre SFB 767. D.B. acknowledges support from the European Research Council through grant no. 819871 (UpTEMPO). G.A. acknowledges project PI2017-30 of the Departmento de Educación, Política Lingüística y Cultura of the Basque Government, and G.A. and J.A. acknowledge funding from project FIS2016-80174-P of the Spanish Ministry of Science, Innovation and Universities MICINN, as well as grant IT1164-19 for consolidated university groups of the Basque Government.

Author information

Authors and Affiliations

Authors

Contributions

J.A., A.G.B., A.L. and D.B. conceived the project. A.L. and D.B. supervised the experimental activity. M.L., F.R. and T.R. fabricated the nanostructures, developed the set-up and performed the measurements. J.A. and A.G.B. coordinated the theoretical modelling. G.A., D.C.M. and A.G.B. developed the theory simulations. All authors contributed to the discussion of the data and to writing the manuscript.

Corresponding author

Correspondence to Daniele Brida.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review statement Nature Physics thanks Christian Nijhuis, Olga Smirnova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion with Supplementary Figs. 1–14.

Source data

Source Data Fig. 1

Zip archive with the files (txt) of the data plotted in Fig. 1.

Source Data Fig. 2

Zip archive with the files (txt) of the data plotted in Fig. 2.

Source Data Fig. 3

Zip archive with the files (txt) of the data plotted in Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, M., Aguirregabiria, G., Ritzkowsky, F. et al. Sub-femtosecond electron transport in a nanoscale gap. Nat. Phys. 16, 341–345 (2020). https://doi.org/10.1038/s41567-019-0745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0745-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing