Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The medicinal chemistry of ferrocene and its derivatives

Abstract

Ferrocene derivatives have attracted significant interest as anticancer, antibacterial, antifungal and antiparasitic drug candidates. Discovered in the 1990s, the two most prominent derivatives, ferroquine and ferrocifen, have since been studied extensively for the treatment of malaria and cancer, respectively. The ferrocenyl moiety in these two compounds participates in important metal-specific modes of action that contribute to the overall therapeutic efficacy of the molecules. Although ferroquine is currently in phase II clinical trials and ferrocifen is in preclinical evaluation, no other ferrocene derivative — in fact, no other non-radioactive organometallic compound of any kind — has advanced into clinical trials. This Perspective delineates strategies for the systematic incorporation of ferrocenyl groups into known drugs or drug candidates, with a view to finding new drug leads. In addition, we provide a critical evaluation of the difficulties associated with obtaining the clinical approval that would enable ferrocene-containing molecules to transition from being synthetic curiosities to effective drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferrocene derivatives.
Figure 2: Ferrocene derivatives in medicinal applications.
Figure 3: Redox chemistry of hydroxyferrocifen.
Figure 4: The roles of ferrocenyl groups in biologically active compounds.
Figure 5: The ferrocenyl group as a bioisostere.
Figure 6: Organometallic moieties bind strongly to enzyme hydrophobic pockets and cause inhibition.
Figure 7: Heterometallic complexes for multi-modal targeting.
Figure 8: The number of reports published each year describing the biological activity of organometallic compounds, including ferrocene and ruthenocene.

Similar content being viewed by others

References

  1. Kealy, T. J. & Pauson, P. L. A new type of organo-iron compound. Nature 168, 1039–1040 (1951).

    Article  CAS  Google Scholar 

  2. Miller, S. A., Tebboth, J. A. & Tremaine, J. F. 114. Dicyclopentadienyliron. J. Chem. Soc. 1952, 632–635 (1952).

    Article  Google Scholar 

  3. Wilkinson, G., Rosenblum, M., Whiting, M. C. & Woodward, R. B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc. 74, 2125–2126 (1952).

    Article  CAS  Google Scholar 

  4. Pfab, W. & Fischer, E. O. Zur Kristallstruktur der Di-cyclopentadienyl-verbindungen des zweiwertigen Eisens, Kobalts und Nickels [German]. Z. Anorg. Allg. Chem. 274, 316–322 (1953).

    Article  CAS  Google Scholar 

  5. Laszlo, P. & Hoffmann, R. Ferrocene: ironclad history or Rashomon tale? Angew. Chem. Int. Ed. 39, 123–124 (2000).

    Article  CAS  Google Scholar 

  6. Stepnicka, P. (ed.) Ferrocenes: Ligands, Materials and Biomolecules (Wiley, 2008).

    Google Scholar 

  7. Top, S. et al. Chromium tricarbonyl complexes of estradiol derivatives: differentiation of α- and β-diastereoisomers using 1- and 2-dimensional NMR spectroscopy at 500 MHz. Organometallics 4, 2143–2150 (1985).

    Article  CAS  Google Scholar 

  8. Jaouen, G. Bioorganometallics: Biomolecules, Labelling, Medicine (Wiley, 2006).

    Google Scholar 

  9. Jaouen, G. & Metzler-Nolte, N. in Topics in Organometallic Chemistry Vol. 32 (Springer, 2010).

    Google Scholar 

  10. Jaouen, G., Vessieres, A. & Butler, I. S. Bioorganometallic chemistry: a future direction for transition metal organometallic chemistry? Acc. Chem. Res. 26, 361–369 (1993).

    Article  CAS  Google Scholar 

  11. Fish, R. H. & Jaouen, G. Bioorganometallic chemistry: structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkali-metal ions, and organometallic pharmaceuticals. Organometallics 22, 2166–2177 (2003).

    Article  CAS  Google Scholar 

  12. Jaouen, G. & Dyson, P. J. in Comprehensive Organometallic Chemistry III, From Fundamentals to Applications Vol. 12 (eds Crabtree, R. H. & Mingos, D. M. P. ) 445–464 (Elsevier, 2007).

    Book  Google Scholar 

  13. Gasser, G. & Metzler-Nolte, N. The potential of organometallic complexes in medicinal chemistry. Curr. Opin. Chem. Biol. 16, 84–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Hartinger, C. G. & Dyson, P. J. Bioorganometallic chemistry — from teaching paradigms to medicinal applications. Chem. Soc. Rev. 38, 391–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Metzler-Nolte, N. & Salmain, M. in Ferrocenes: Ligands, Materials and Biomolecules (ed. Stepnicka, P. ) 499–639 (Wiley, 2008).

    Book  Google Scholar 

  16. Ryabov, A. D. The biochemical reactions of organometallics with enzymes and proteins. Angew. Chem. Int. Ed. Engl. 30, 931–941 (1991).

    Article  Google Scholar 

  17. van Staveren, D. R. & Metzler-Nolte, N. The bioorganometallic chemistry of ferrocene. Chem. Rev. 104, 5931–5985 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Braga, S. S. & Silva, A. M. S. A new age for iron: antitumoral ferrocenes. Organometallics 32, 5626–5639 (2013).

    Article  CAS  Google Scholar 

  19. Ornelas, C. Application of ferrocene and its derivatives in cancer research. New J.Chem. 35, 1973–1985 (2011).

    Article  CAS  Google Scholar 

  20. Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. On the medicinal chemistry of ferrocene. Appl. Organomet. Chem. 21, 613–625 (2007).

    Article  CAS  Google Scholar 

  21. Hartinger, C. G., Metzler-Nolte, N. & Dyson, P. J. Challenges and opportunities in the development of organometallic anticancer drugs. Organometallics 31, 5677–5685 (2012).

    Article  CAS  Google Scholar 

  22. Gasser, G., Ott, I. & Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem. 54, 3–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Yeary, R. A. Chronic toxicity of dicyclopentadienyliron (ferrocene) in dogs. Toxicol. Appl. Pharmacol. 15, 666–676 (1969).

    Article  CAS  PubMed  Google Scholar 

  24. Nesmeyanov, A. N., Bogomolova, L. G. & Viltcheskaya, V. Ferrocerone. US Patent 119 356 (1971).

  25. Fiorina, V. J., Dubois, R. J. & Brynes, S. Ferrocenyl polyamines as agents for the chemoimmunotherapy of cancer. J. Med. Chem. 21, 393–395 (1978).

    Article  CAS  PubMed  Google Scholar 

  26. Gill, T. J. & Mann, L. T. Studies on synthetic polypeptide antigens. XV. The immunochemical properties of ferrocenyl-poly Glu58Lys36Tyr6 (No. 2) conjugates. J. Immunol. 96, 906–912 (1966).

    CAS  PubMed  Google Scholar 

  27. Köpf-Maier, P., Köpf, H. & Neuse, E. W. Ferrocenium salts — the first antineoplastic iron compounds. Angew. Chem. Int. Ed. Engl. 23, 456–457 (1984).

    Article  Google Scholar 

  28. Neuse, E. W. & Kanzawa, F. Evaluation of the activity of some water-soluble ferrocene and ferricenium compounds against carcinoma of the lung by the human tumor clonogenic assay. Appl. Organomet. Chem. 4, 19–26 (1990).

    Article  CAS  Google Scholar 

  29. Hiroshi, T. & Masahiro, M. DNA cleaving activity and cytotoxic activity of ferricenium cations. Chem. Lett. 26, 1177–1178 (1997).

    Article  Google Scholar 

  30. Osella, D. et al. On the mechanism of the antitumor activity of ferrocenium derivatives. Inorg. Chim. Acta 306, 42–48 (2000).

    Article  CAS  Google Scholar 

  31. Loev, B. & Flores, M. Ferrocene derivatives. J. Org. Chem. 26, 3595 (1961).

    Article  CAS  Google Scholar 

  32. Edwards, E. I., Epton, R. & Marr, G. 1,1′-Ferrocenyldiacetic acid anhydride and its use in the preparation of heteroannularly substituted ferrocenyl-penicillins and -cephalosporins. J. Organomet. Chem. 122, C49–C53 (1976).

    Article  CAS  Google Scholar 

  33. Edwards, E. I., Epton, R. & Marr, G. Organometallic derivatives of penicillins and cephalosporins a new class of semi-synthetic antibiotics. J. Organomet. Chem. 85, C23–C25 (1975).

    Article  CAS  Google Scholar 

  34. Top, S. et al. Ferrocenyl hydroxytamoxifen: a prototype for a new range of oestradiol receptor site-directed cytotoxics. Chem. Commun. 955–956 (1996).

  35. Biot, C., Glorian, G., Maciejewski, L. A. & Brocard, J. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene–chloroquine analogue. J. Med. Chem. 40, 3715–3718 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. World Health Organization. World Malaria Report 2016 (WHO, 2016).

  37. Biot, C. & Dive, D. in Medicinal Organometallic Chemistry Vol. 32 (eds Jaouen, G. & Metzler-Nolte, N. ) 155–193 (Springer, 2010).

    Book  Google Scholar 

  38. Domarle, O. et al. In vitro antimalarial activity of a new organometallic analog, ferrocene–chloroquine. Antimicrob. Agents Chemother. 42, 540–544 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dubar, F. et al. The antimalarial ferroquine: role of the metal and intramolecular hydrogen bond in activity and resistance. ACS Chem. Biol. 6, 275–287 (2012).

    Article  CAS  Google Scholar 

  40. Alonso, P. L. et al. A research agenda for malaria eradication: drugs. PLoS Med. 8, e1000402 (2011).

    Article  Google Scholar 

  41. Burrows, J. N., Hooft van Huijsduijnen, R., Möhrle, J. J., Oeuvray, C. & Wells, T. N. Designing the next generation of medicines for malaria control and eradication. Malaria J. 12, 187 (2013).

    Article  Google Scholar 

  42. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02497612 (2017).

  43. Christensen, S. B. in Textbook of Drug Design and Discovery (eds Krogsgaard-Larsen, P., Strømgaard, K. & Madsen, U. ) 341–358 (CRC Press, 2010).

    Google Scholar 

  44. Wells, T. N. C. & van Huijsduijnen, R. H. Ferroquine: welcome to the next generation of antimalarials. Lancet Infect. Dis. 15, 1365–1366 (2015).

    Article  PubMed  Google Scholar 

  45. Chavain, N. et al. Investigation of the redox behavior of ferroquine, a new antimalarial. Mol. Pharm. 5, 710–716 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Dubar, F. et al. The ferroquine antimalarial conundrum: redox activation and reinvasion inhibition. Angew. Chem. Int. Ed. 52, 7690–7693 (2013).

    Article  CAS  Google Scholar 

  47. Beagley, P. et al. Synthesis and antimalarial activity in vitro of new ruthenocene–chloroquine analogues. J. Chem. Soc. Dalton Trans. 4426–4433 (2002).

  48. Swarts, J. C., Nafady, A., Roudebush, J. H., Trupia, S. & Geiger, W. E. One-electron oxidation of ruthenocene: reactions of the ruthenocenium ion in gentle electrolyte media. Inorg. Chem. 48, 2156–2165 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Trupia, S., Nafady, A. & Geiger, W. E. Electrochemical preparation of the bis(ruthenocenium) dication. Inorg. Chem. 42, 5480–5482 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Fourie, E., van Rensburg, J. M. J. & Swarts, J. C. Synthesis, crystal structure and comparative electrochemistry of metallocenyldiphenylphosphines of ruthenocene, osmocene, ferrocene and cobaltocenium hexafluorophosphate. J. Organomet. Chem. 754, 80–87 (2014).

    Article  CAS  Google Scholar 

  51. Dive, D. & Biot, C. Ferroquine as an oxidative shock antimalarial. Curr. Top. Med. Chem. 14, 1684–1692 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Dubar, F. et al. Deciphering the resistance-counteracting functions of ferroquine in Plasmodium falciparum-infected erythrocytes. ACS Med. Chem. Lett. 3, 480–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Biot, C. et al. Insights into the mechanism of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol. Pharm. 2, 185–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Schatzschneider, U. & Metzler-Nolte, N. New principles in medicinal organometallic chemistry. Angew. Chem. Int. Ed. 45, 1504–1507 (2006).

    Article  CAS  Google Scholar 

  55. Mertins, O. et al. Further insights into hydrophobic interactions between ferrocenyl–tamoxifen drugs and non-polar molecular architectures at electrode surfaces. J. Electroanal. Chem. 635, 13–19 (2009).

    Article  CAS  Google Scholar 

  56. Hillard, E. A. et al. Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds. Chem. Commun. 2612–2628 (2008).

  57. Buriez, O., Labbe, E., Pigeon, P., Jaouen, G. & Amatore, C. Electrochemical attachment of a conjugated amino-ferrocifen complex onto carbon and metal surfaces. J. Electroanal. Chem. 619620, 169–175 (2008).

    Article  CAS  Google Scholar 

  58. Hillard, E. A., Pigeon, P., Vessieres, A., Amatore, C. & Jaouen, G. The influence of phenolic hydroxy substitution on the electron transfer and anti-cancer properties of compounds based on the 2-ferrocenyl-1-phenyl-but-1-ene motif. Dalton Trans. 5073–5081 (2007).

  59. Messina, P. et al. Deciphering the activation sequence of ferrociphenol anticancer drug candidates. Chem. Eur. J. 18, 6581–6587 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Hillard, E., Vessieres, A., Thouin, L., Jaouen, G. & Amatore, C. Ferrocene-mediated proton-coupled electron transfer in a series of ferrocifen-type breast-cancer drug candidates. Angew. Chem. Int. Ed. 45, 285–290 (2006).

    Article  CAS  Google Scholar 

  61. Hamels, D. et al. Ferrocenyl quinone methides as strong antiproliferative agents: formation by metabolic and chemical oxidation of ferrocenyl phenols. Angew. Chem. Int. Ed. 48, 9124–9126 (2009).

    Article  CAS  Google Scholar 

  62. Zekri, O. et al. Role of aromatic substituents on the antiproliferative effects of diphenyl ferrocenyl butene compounds. Dalton Trans. 4318–4326 (2009).

  63. Nguyen, A. et al. Synthesis and structure–activity relationships of ferrocenyl tamoxifen derivatives with modified side chains. Chem. Eur. J. 15, 684–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Heilmann, J. B. et al. Ferrocenyl compounds possessing protected phenol and thiophenol groups: synthesis, X-ray structure, and in vitro biological effects against breast cancer. J. Organomet. Chem. 693, 1716–1722 (2008).

    Article  CAS  Google Scholar 

  65. Nguyen, A. et al. Organometallic analogues of tamoxifen: effect of the amino side-chain replacement by a carbonyl ferrocenyl moiety in hydroxytamoxifen. J. Organomet. Chem. 692, 1219–1225 (2007).

    Article  CAS  Google Scholar 

  66. Vessieres, A., Top, S., Beck, W., Hillard, E. & Jaouen, G. Metal complex SERMs (selective oestrogen receptor modulators). The influence of different metal units on breast cancer cell antiproliferative effects. Dalton Trans. 529–541 (2006).

  67. Pigeon, P. et al. Selective estrogen receptor modulators in the ruthenocene series. Synthesis and biological behavior. J. Med. Chem. 48, 2814–2821 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Top, S. et al. Selective estrogen-receptor modulators (SERMs) in the cyclopentadienylrhenium tricarbonyl series: synthesis and biological behaviour. ChemBioChem 5, 1104–1113 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Jaouen, G., Top, S., Vessieres, A., Leclercq, G. & McGlinchey, M. J. The first organometallic selective estrogen receptor modulators (SERMs) and their relevance to breast cancer. Curr. Med. Chem. 11, 2505–2517 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Top, S. et al. The first titanocenyl dichloride moiety vectorised by a selective estrogen receptor modulator (SERM). Synthesis and preliminary biochemical behaviour. J. Organomet. Chem. 643644, 350–356 (2002).

    Article  Google Scholar 

  71. Jaouen, G. et al. First anti-oestrogen in the cyclopentadienyl rhenium tricarbonyl series. Synthesis and study of antiproliferative effects. Chem. Commun. 2001, 383–384 (2001).

    Article  Google Scholar 

  72. Hillard, E. A. et al. Organometallic diphenols: the importance of the organometallic moiety on the expression of a cytotoxic effect on breast cancer cells. J. Organomet. Chem. 692, 1315–1326 (2007).

    Article  CAS  Google Scholar 

  73. Osella, D. et al. FACS analysis of oxidative stress induced on tumour cells by SERMs. Inorg. Chim. Acta 358, 1993–1998 (2005).

    Article  CAS  Google Scholar 

  74. Vessières, A. et al. A ferrocenyl derivative of hydroxytamoxifen elicits an estrogen receptor-independent mechanism of action in breast cancer cell lines. J. Inorg. Biochem. 104, 503–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. de Oliveira, A. C. et al. Biological evaluation of twenty-eight ferrocenyl tetrasubstituted olefins: cancer cell growth inhibition, ROS production and hemolytic activity. Eur. J. Med. Chem. 46, 3778–3787 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Wlassoff, W. A. et al. Hydrogen peroxide overproduced in breast cancer cells can serve as an anticancer prodrug generating apoptosis-stimulating hydroxyl radicals under the effect of tamoxifen-ferrocene conjugate. J. Pharm. Pharmacol. 59, 1549–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Jaouen, G. & Top, S. in Advances in Organometallic Chemistry and Catalysis (ed. Pombeiro, A. J. L. ) 563–580 (Wiley, 2014).

    Google Scholar 

  78. Michard, Q., Jaouen, G., Vessieres, A. & Bernard, B. A. Evaluation of cytotoxic properties of organometallic ferrocifens on melanocytes, primary and metastatic melanoma cell lines. J. Inorg. Biochem. 102, 1980–1985 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Allard, E. et al. Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. J. Control. Release 130, 146–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Citta, A. et al. Evidence for targeting thioredoxin reductases with ferrocenyl quinone methides. A possible molecular basis for the antiproliferative effect of hydroxyferrocifens on cancer cells. J. Med. Chem. 57, 8849–8859 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Bruyère, C. et al. Ferrocifen derivatives that induce senescence in cancer cells: selected examples. J. Inorg. Biochem. 141, 144–151 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Jaouen, G., Vessières, A. & Top, S. Ferrocifen type anti cancer drugs. Chem. Soc. Rev. 44, 8802–8817 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Patra, M., Gasser, G. & Metzler-Nolte, N. Small organometallic compounds as antibacterial agents. Dalton Trans. 41, 6350–6358 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Meggers, E. Exploring biologically relevant chemical space with metal complexes. Curr. Opin. Chem. Biol. 11, 287–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Anstaett, P. & Gasser, G. in Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis and Imaging (eds Jaouen, G. & Salmain, M. ) 1–42 (Wiley, 2015).

    Google Scholar 

  86. Hess, J., Keiser, J. & Gasser, G. Towards organometallic antischistosomal drug candidates. Future Med. Chem. 8, 821–830 (2015).

    Article  CAS  Google Scholar 

  87. Camarada, M. B., Echeverria, C. & Ramirez-Tagle, R. Medicinal organometallic compounds with anti-chagasic activity. MedChemComm 7, 1307–1315 (2016).

    Article  CAS  Google Scholar 

  88. Rubbiani, R., Blacque, O. & Gasser, G. Sedaxicenes: potential new antifungal ferrocene-based agents? Dalton Trans. 45, 6619–6626 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Kilpin, K. J. & Dyson, P. J. Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem. Sci. 4, 1410–1419 (2013).

    Article  CAS  Google Scholar 

  90. Schlotter, K., Boeckler, F., Hübner, H. & Gmeiner, P. Fancy bioisosteres: metallocene-derived G-protein-coupled receptor ligands with subnanomolar binding affinity and novel selectivity profiles. J. Med. Chem. 48, 3696–3699 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Huber, D., Hübner, H. & Gmeiner, P. 1,1′-Disubstituted ferrocenes as molecular hinges in mono- and bivalent dopamine receptor ligands. J. Med. Chem. 52, 6860–6870 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Can, D. et al. [(Cp-R)M(CO)] (M = Re or 99mTc) arylsulfonamide, arylsulfamide, and arylsulfamate conjugates for selective targeting of human carbonic anhydrase IX. Angew. Chem. Int. Ed. 51, 3354–3357 (2012).

    Article  CAS  Google Scholar 

  93. Salmon, A. J. et al. Metallocene-based inhibitors of cancer-associated carbonic anhydrase enzymes IX and XII. J. Med. Chem. 55, 5506–5517 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Salmon, A. J., Williams, M. L., Hofmann, A. & Poulsen, S.-A. Protein crystal structures with ferrocene and ruthenocene-based enzyme inhibitors. Chem. Commun. 48, 2328–2330 (2012).

    Article  CAS  Google Scholar 

  95. Sansook, S. et al. Synthesis of bioorganometallic nanomolar-potent CB2 agonists containing a ferrocene unit. Organometallics 35, 3361–3368 (2016).

    Article  CAS  Google Scholar 

  96. Patra, M. et al. Ferrocenyl derivatives of the anthelmintic praziquantel: design, synthesis, and biological evaluation. J. Med. Chem. 55, 8790–8798 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Amin, J. et al. Synthesis of oxindole-based bioorganometallic kinase inhibitors incorporating one or more ferrocene groups. Organometallics 32, 5818–5825 (2013).

    Article  CAS  Google Scholar 

  98. Hess, J. et al. Assessment of the nematocidal activity of metallocenyl analogues of monepantel. Dalton Trans. 45, 17662–17671 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Hess, J. et al. Organometallic derivatization of the nematocidal drug monepantel leads to promising antiparasitic drug candidates. Chem. Eur. J. 22, 16602–16612 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Wieczorek, A., Błauz, A., Zakrzewski, J., Rychlik, B. & Plazuk, D. Ferrocenyl 2,5-piperazinediones as tubulin-binding organometallic ABCB1 and ABCG2 inhibitors active against MDR cells. ACS Med. Chem. Lett. 7, 612–617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Patra, M. et al. Sandwich and half-sandwich derivatives of platensimycin: synthesis and biological evaluation. Organometallics 31, 5760–5771 (2012).

    Article  CAS  Google Scholar 

  102. Patra, M. et al. Synthesis and biological evaluation of ferrocene-containing bioorganometallics inspired by the antibiotic platensimycin lead structure. Organometallics 29, 4312–4319 (2010).

    Article  CAS  Google Scholar 

  103. Patra, M. et al. Synthesis of optically active ferrocene-containing platensimycin derivatives with a C6–C7 substitution pattern. Eur. J. Inorg. Chem. 2011, 3295–3302 (2011).

    Article  CAS  Google Scholar 

  104. Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Mann, B. S., Johnson, J. R., Cohen, M. H., Justice, R. & Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12, 1247–1252 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Spencer, J. et al. Click JAHAs: conformationally restricted ferrocene-based histone deacetylase inhibitors. MedChemComm 3, 61–64 (2012).

    Article  CAS  Google Scholar 

  107. Spencer, J. et al. Synthesis and biological evaluation of JAHAs: ferrocene-based histone deacetylase inhibitors. ACS Med. Chem. Lett. 2, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Librizzi, M. et al. Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class I histone deacetylase inhibitor, on triple-negative MDA-MB231 breast cancer cells. Chem. Res. Toxicol. 25, 2608–2616 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Gericke, H. J., Muller, A. J. & Swarts, J. C. Electrochemical illumination of intramolecular communication in ferrocene-containing tris-β-diketonato aluminum(III) complexes; cytotoxicity of Al(FcCOCHCOCF3)3 . Inorg. Chem. 51, 1552–1561 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Sathyadevi, P., Krishnamoorthy, P., Butorac, R. R., Cowley, A. H. & Dharmaraj, N. Synthesis of novel heterobimetallic copper(I) hydrazone Schiff base complexes: a comparative study on the effect of heterocyclic hydrazides towards interaction with DNA/protein, free radical scavenging and cytotoxicity. Metallomics 4, 498–511 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Banfic´, J., Legin, A. A., Jakupec, M. A., Galanski, M. & Keppler, B. K. Platinum(IV) complexes featuring one or two axial ferrocene bearing ligands — synthesis, characterization, and cytotoxicity. Eur. J. Inorg. Chem. 2014, 484–492 (2014).

    Article  CAS  Google Scholar 

  112. Ning, D., Cao, Y., Zhang, Y., Xia, L. & Zhao, G. Structures and antitumor activities of planar chiral cyclopalladated ferrocene derivatives. Inorg. Chem. Commun. 58, 57–59 (2015).

    Article  CAS  Google Scholar 

  113. Nieto, D. et al. Heterometallic platinum(II) compounds with β-aminoethylferrocenes: synthesis, electrochemical behaviour and anticancer activity. Dalton Trans. 41, 432–441 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Nieto, D. et al. Catalytically generated ferrocene-containing guanidines as efficient precursors for new redox-active heterometallic platinum(II) complexes with anticancer activity. Organometallics 34, 5407–5417 (2015).

    Article  CAS  Google Scholar 

  115. Wani, W. A. et al. Recent advances in iron complexes as potential anticancer agents. New J.Chem. 40, 1063–1090 (2016).

    Article  CAS  Google Scholar 

  116. Apfelbaum, H. C., Blum, J. & Wenzel, M. Cis-platinum-o-catecholato conjugate labelled with a 103[Ru]-ruthenocene residue. J. Labelled Comp. Radiopharm. 27, 75–83 (1989).

    Article  CAS  Google Scholar 

  117. Rosenfeld, A., Blum, J., Gibson, D. & Ramu, A. Preparation, characterization and antileukemic properties of diaminemalonatoplatinum(II) complexes tethered to ferrocene. Inorg. Chim. Acta 201, 219–221 (1992).

    Article  CAS  Google Scholar 

  118. Spencer, J. et al. Excellent correlation between cathepsin B inhibition and cytotoxicity for a series of palladacycles. Dalton Trans. 10731–10735 (2009).

  119. Samouei, H., Rashidi, M. & Heinemann, F. W. A cyclometalated diplatinum complex containing 1,1′-bis(diphenylphosphino)ferrocene as spacer ligand: antitumor study. J. Organomet. Chem. 696, 3764–3771 (2011).

    Article  CAS  Google Scholar 

  120. Deepthi, S. B., Trivedi, R., Giribabu, L., Sujitha, P. & Kumar, C. G. Palladium(II) carbohydrate complexes of alkyl, aryl and ferrocenyl esters and their cytotoxic activities. Inorg. Chim. Acta 416, 164–170 (2014).

    Article  CAS  Google Scholar 

  121. Schulz, J., Renfrew, A. K., Císarˇová, I., Dyson, P. J. & Šteˇpnicˇka, P. Synthesis and anticancer activity of chalcogenide derivatives and platinum(II) and palladium(II) complexes derived from a polar ferrocene phosphanyl–carboxamide. Appl. Organomet. Chem. 24, 392–397 (2010).

    CAS  Google Scholar 

  122. Donaldson, K. L., Goolsby, G. L. & Wahl, A. F. Cytotoxicity of the anticancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int. J. Cancer 57, 847–855 (1994).

    Article  CAS  PubMed  Google Scholar 

  123. Talancón, D. et al. Diastereomerically pure platinum(II) complexes as antitumoral agents: the influence of the mode of binding {(N), (N,O)- or (C,N)}- of (1S,2R)[(η5-C5H5)Fe{(η5-C5H4)CHNCH(Me)CH(OH)C6H5}] and the arrangement of the auxiliary ligands. J. Inorg. Biochem. 118, 1–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Cortés, R. et al. A novel cyclometallated Pt(II)-ferrocene complex induces nuclear FOXO3a localization and apoptosis and synergizes with cisplatin to inhibit lung cancer cell proliferation. Metallomics 6, 622–633 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Dyson, P. J. & Sava, G. Metal-based antitumour drugs in the post genomic area. Dalton Trans. 2006, 1929–1933 (2006).

    Article  CAS  Google Scholar 

  126. Hartinger, C. G. et al. KP1019, a new redox-active anticancer agent — preclinical development and results of a clinical phase I study in tumor patients. Chem. Biodivers. 5, 2140–2154 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Trondl, R. et al. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem. Sci. 5, 2925–2932 (2014).

    Article  CAS  Google Scholar 

  128. Von Poelhsitz, G. et al. Synthesis, characterization, X-ray structure and preliminary in vitro antitumor activity of the nitrosyl complex fac-[RuCl3(NO)(dppf)], dppf = 1,1′-bis(diphenylphosphine)ferrocene. Polyhedron 26, 4707–4712 (2007).

    Article  CAS  Google Scholar 

  129. Charvátová, H., Riedel, T., Císarˇová, I., Dyson, P. J. & Šteˇpnicˇka, P. (η6-Arene)ruthenium complexes with P-coordinated phosphinoferrocene amides bearing extended polar substituents at the amide nitrogen: synthesis, characterization and cytotoxicity. J. Organomet. Chem. 802, 21–26 (2016).

    Article  CAS  Google Scholar 

  130. Tauchman, J., Süss-Fink, G., Šteˇpnicˇka, P., Zava, O. & Dyson, P. J. Arene ruthenium complexes with phosphinoferrocene amino acid conjugates: synthesis, characterization and cytotoxicity. J. Organomet. Chem. 723, 233–238 (2013).

    Article  CAS  Google Scholar 

  131. Auzias, M. et al. Arene–ruthenium complexes with ferrocene-derived ligands: synthesis and characterization of complexes of the type [Ru(η6-arene)(NC5H4CH2NHOC-C5H4FeC5H5)Cl2] and [Ru(η6-arene)(NC3H3N(CH2)2O2C-C5H4FeC5H5)Cl2]. J. Organomet. Chem. 694, 855–861 (2009).

    Article  CAS  Google Scholar 

  132. Auzias, M. et al. Ferrocenoyl pyridine arene ruthenium complexes with anticancer properties: synthesis, structure, electrochemistry, and cytotoxicity. Inorg. Chem. 47, 578–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Govender, P. et al. First- and second-generation heterometallic dendrimers containing ferrocenyl–ruthenium(II)–arene motifs: synthesis, structure, electrochemistry, and preliminary cell proliferation studies. Organometallics 33, 5535–5545 (2014).

    Article  CAS  Google Scholar 

  134. Anderson, C. M. et al. Synthesis and characterization of water-soluble, heteronuclear ruthenium(III)/ferrocene complexes and their interactions with biomolecules. J. Inorg. Biochem. 145, 41–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Mu, C. et al. Induction of cytotoxicity in pyridine analogues of the anti-metastatic Ru(III) complex NAMI-A by ferrocene functionalization. Inorg. Chem. 55, 177–190 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Kemp, K. C., Nell, M. J., Van Rensburg, C. E. J. & Swarts, J. C. Cytotoxicity of ruthenocene-containing β-diketones. Anticancer Res. 32, 2915–2918 (2012).

    CAS  PubMed  Google Scholar 

  137. Swarts, J. C. et al. Cytotoxicity of a series of ferrocene-containing β-diketones. Anticancer Res. 28, 2781–2784 (2008).

    CAS  PubMed  Google Scholar 

  138. Falzone, N., Böhm, L., Swarts, J. C. & Van Rensburg, C. E. J. Radiosensitization of CHO cells by two novel rhodium complexes under oxic and hypoxic conditions. Anticancer Res. 26, 147–152 (2006).

    CAS  PubMed  Google Scholar 

  139. Tian, J. et al. Synthesis of PEGylated ferrocene nanoconjugates as the radiosensitizer of cancer cells. Bioconjugate Chem. 27, 1518–1524 (2016).

    Article  CAS  Google Scholar 

  140. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Weber, B. et al. Cytotoxicity and cell death pathways invoked by two new rhodium–ferrocene complexes in benign and malignant prostatic cell lines. Anticancer Res. 24, 763–770 (2004).

    CAS  PubMed  Google Scholar 

  142. Tan, C.-P., Lu, Y.-Y., Ji, L.-N. & Mao, Z.-W. Metallomics insights into the programmed cell death induced by metal-based anticancer compounds. Metallomics 6, 978–995 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Su, Z., Yang, Z., Xie, L., DeWitt, J. P. & Chen, Y. Cancer therapy in the necroptosis era. Cell Death Diff. 23, 748–756 (2016).

    Article  CAS  Google Scholar 

  146. Blackie, M. A. L. et al. Synthesis and antimalarial activity in vitro of new heterobimetallic complexes: Rh and Au derivatives of chloroquine and a series of ferrocenyl-4-amino-7-chloroquinolines. J. Organomet. Chem. 688, 144–152 (2003).

    Article  CAS  Google Scholar 

  147. Li, Y., de Kock, C., Smith, P. J., Chibale, K. & Smith, G. S. Synthesis and evaluation of a carbosilane congener of ferroquine and its corresponding half-sandwich ruthenium and rhodium complexes for antiplasmodial and β-hematin inhibition activity. Organometallics 33, 4345–4348 (2014).

    Article  CAS  Google Scholar 

  148. Li, Y. et al. Synthesis, characterization, and pharmacological evaluation of silicon-containing aminoquinoline organometallic complexes as antiplasmodial, antitumor, and antimycobacterial agents. Organometallics 32, 141–150 (2013).

    Article  CAS  Google Scholar 

  149. Maity, B. et al. Ferrocene-promoted photoactivated DNA cleavage and anticancer activity of terpyridyl copper(II) phenanthroline complexes. Organometallics 29, 3632–3641 (2010).

    Article  CAS  Google Scholar 

  150. Balaji, B. et al. Ferrocene-conjugated oxidovanadium(IV) complexes as potent near-IR light photocytotoxic agents. Eur. J. Inorg. Chem. 2012, 126–135 (2012).

    Article  CAS  Google Scholar 

  151. Wang, T. et al. A ferrocenyl pyridine-based Ru(II) arene complex capable of generating OH and 1O2 along with photoinduced ligand dissociation. RSC Adv. 6, 45652–45659 (2016).

    Article  CAS  Google Scholar 

  152. Maity, B., Gadadhar, S., Goswami, T. K., Karande, A. A. & Chakravarty, A. R. Impact of metal on the DNA photocleavage activity and cytotoxicity of ferrocenyl terpyridine 3d metal complexes. Dalton Trans. 40, 11904–11913 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Mitra, K. et al. Remarkable anticancer activity of ferrocenyl-terpyridine platinum(II) complexes in visible light with low dark toxicity. Dalton Trans. 43, 751–763 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Goswami, T. K., Chakravarthi, B. V. S. K., Roy, M., Karande, A. A. & Chakravarty, A. R. Ferrocene-conjugated l-tryptophan copper(II) complexes of phenanthroline bases showing DNA photocleavage activity and cytotoxicity. Inorg. Chem. 50, 8452–8464 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Goswami, T. K. et al. Ferrocene-conjugated copper(II) complexes of l-methionine and phenanthroline bases: synthesis, structure, and photocytotoxic activity. Organometallics 31, 3010–3021 (2012).

    Article  CAS  Google Scholar 

  156. Goswami, T. K. et al. Ferrocenyl-l-amino acid copper(II) complexes showing remarkable photo-induced anticancer activity in visible light. Dalton Trans. 43, 11988–11999 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Daum, S. et al. Improved synthesis of N-benzylaminoferrocene-based prodrugs and evaluation of their toxicity and antileukemic activity. J. Med. Chem. 58, 2015–2024 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Hagen, H. et al. Aminoferrocene-based prodrugs activated by reactive oxygen species. J. Med. Chem. 55, 924–934 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Swiss National Science Foundation (Professorship Nos PP00P2_133568 and PP00P2_157545 to G.G.), the University of Zurich (G.G.) and the UBS Promedica Stiftung (M.P. and G.G.). This work has also received support under the Investissements d’Avenir programme launched by the French Government and implemented by the L’Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL, G.G.). The authors thank G. Jaouen and C. Biot for insight into the development of ferrocifens and ferroquine, and B. Spingler and P. Ung for useful feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Malay Patra or Gilles Gasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, M., Gasser, G. The medicinal chemistry of ferrocene and its derivatives. Nat Rev Chem 1, 0066 (2017). https://doi.org/10.1038/s41570-017-0066

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0066

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research