Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The adenosine pathway in immuno-oncology

A Publisher Correction to this article was published on 17 July 2020

This article has been updated

Abstract

Cancer immunotherapy based on immune-checkpoint inhibition or adoptive cell therapy has revolutionized cancer care. Nevertheless, a large proportion of patients do not benefit from such treatments. Over the past decade, remarkable progress has been made in the development of ‘next-generation’ therapeutics in immuno-oncology, with inhibitors of extracellular adenosine (eADO) signalling constituting an expanding class of agents. Induced by tissue hypoxia, inflammation, tissue repair and specific oncogenic pathways, the adenosinergic axis is a broadly immunosuppressive pathway that regulates both innate and adaptive immune responses. Inhibition of eADO-generating enzymes and/or eADO receptors can promote antitumour immunity through multiple mechanisms, including enhancement of T cell and natural killer cell function, suppression of the pro-tumourigenic effects of myeloid cells and other immunoregulatory cells, and promotion of antigen presentation. With several clinical trials currently evaluating inhibitors of the eADO pathway in patients with cancer, we herein review the pathophysiological function of eADO with a focus on effects on antitumour immunity. We also discuss the treatment opportunities, potential limitations and biomarker-based strategies related to adenosine-targeted therapy in oncology.

Key points

  • Abundant evidence indicates that the conversion of pro-inflammatory extracellular ATP into immunosuppressive extracellular adenosine (eADO) favours tumour progression and escape from antitumour immunity.

  • The production of eADO primarily involves the concerted action of the cell-surface ectonucleotidases CD39 and CD73; however, alternative pathways involve the enzymatic activity of tissue-non-specific alkaline phosphatases and the NAD+ ectohydrolase CD38 as well as cellular export of cytosolic adenosine.

  • Activation of adenosine receptors A2A and A2B on tumour-infiltrating immune cells suppresses the antitumour activities of these cells; A2B signalling in tumour cells themselves further promotes their survival and metastasis.

  • In preclinical models, targeted inhibition of CD73, CD39, CD38, A2A or A2B can restore antitumour immunity and enhance the efficacy of cancer immunotherapies.

  • Clinical trials investigating the antitumour activity of eADO pathway inhibitors in patients with cancer are underway and preliminary evidence of therapeutic efficacy has been reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extracellular and intracellular pathways regulating eADO production, clearance and, thus, signalling.
Fig. 2: Immunosuppressive eADO signalling.
Fig. 3: Effects of adenosine receptor A2A signalling on pathways involved in T cell activation.
Fig. 4: Gene-expression landscape of components of the adenosinergic signalling pathway in human cancers.

Similar content being viewed by others

Change history

References

  1. Wolberg, G., Zimmerman, T. P., Hiemstra, K., Winston, M. & Chu, L. C. Adenosine inhibition of lymphocyte-mediated cytolysis: possible role of cyclic adenosine monophosphate. Science 187, 957–959 (1975).

    CAS  PubMed  Google Scholar 

  2. Henney, C. S., Bourne, H. R. & Lichtenstein, L. M. The role of cyclic 3′,5′ adenosine monophosphate in the specific cytolytic activity of lymphocytes. J. Immunol. 108, 1526–1534 (1972).

    CAS  PubMed  Google Scholar 

  3. Strom, T. B., Deisseroth, A., Morganroth, J., Carpenter, C. B. & Merrill, J. P. Alteration of the cytotoxic action of sensitized lymphocytes by cholinergic agents and activators of adenylate cyclase. Proc. Natl Acad. Sci. USA 69, 2995–2999 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Blay, J., White, T. D. & Hoskin, D. W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 57, 2602–2605 (1997).

    CAS  PubMed  Google Scholar 

  5. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001).

    CAS  PubMed  Google Scholar 

  6. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun, X. et al. CD39/ENTPD1 expression by CD4+ Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139, 1030–1040 (2010).

    CAS  PubMed  Google Scholar 

  8. Stagg, J. et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl Acad. Sci. USA 107, 1547–1552 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stagg, J. et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 71, 2892–2900 (2011).

    CAS  PubMed  Google Scholar 

  10. Stagg, J. et al. CD73-deficient mice are resistant to carcinogenesis. Cancer Res. 72, 2190–2196 (2012).

    CAS  PubMed  Google Scholar 

  11. Wang, L. et al. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J. Clin. Invest. 121, 2371–2382 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yegutkin, G. G. et al. Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur. J. Immunol. 41, 1231–1241 (2011).

    CAS  PubMed  Google Scholar 

  13. Jin, D. et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 70, 2245–2255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaczmarek, E. et al. Identification and characterization of CD39/vascular ATP diphosphohydrolase. J. Biol. Chem. 271, 33116–33122 (1996).

    CAS  PubMed  Google Scholar 

  15. Ferrari, D., Chiozzi, P., Falzoni, S., Hanau, S. & Di Virgilio, F. Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J. Exp. Med. 185, 579–582 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boison, D. & Yegutkin, G. G. Adenosine metabolism: emerging concepts for cancer therapy. Cancer Cell 36, 582–596 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Boison, D. in The Adenosine Receptors 13–32 (Humana Press, 2018).

  18. Ferretti, E., Horenstein, A. L., Canzonetta, C., Costa, F. & Morandi, F. Canonical and non-canonical adenosinergic pathways. Immunol. Lett. 205, 25–30 (2019).

    CAS  PubMed  Google Scholar 

  19. Yegutkin, G. G., Henttinen, T., Samburski, S. S., Spychala, J. & Jalkanen, S. The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochemical J. 367, 121–128 (2002).

    CAS  Google Scholar 

  20. Zimmermann, H. 5’-Nucleotidase: molecular structure and functional aspects. Biochem. J. 285, 345–365 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Donaldson, S. H., Picher, M. & Boucher, R. C. Secreted and cell-associated adenylate kinase and nucleoside diphosphokinase contribute to extracellular nucleotide metabolism on human airway surfaces. Am. J. Respir. Cell Mol. Biol. 26, 209–215 (2002).

    CAS  PubMed  Google Scholar 

  22. Deterre, P. et al. Coordinated regulation in human T cells of nucleotide-hydrolyzing ecto-enzymatic activities, including CD38 and PC-1. Possible role in the recycling of nicotinamide adenine dinucleotide metabolites. J. Immunol. 157, 1381–1388 (1996).

    CAS  PubMed  Google Scholar 

  23. Horenstein, A. L. et al. A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2, e26246 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Street, S. E. et al. Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J. Neurosci. 33, 11314–11322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Moser, G. H., Schrader, J. & Deussen, A. Turnover of adenosine in plasma of human and dog blood. Am. J. Physiol. 256, C799–C806 (1989).

    CAS  PubMed  Google Scholar 

  26. Latini, S. & Pedata, F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J. Neurochem. 79, 463–484 (2001).

    CAS  PubMed  Google Scholar 

  27. Williams-Karnesky, R. L. et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Invest. 123, 3552–3563 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Morote-Garcia, J. C., Rosenberger, P., Kuhlicke, J. & Eltzschig, H. K. HIF-1–dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111, 5571–5580 (2008).

    CAS  PubMed  Google Scholar 

  29. Decking, U. K. M., Schlieper, G., Kroll, K. & Schrader, J. Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ. Res. 81, 154–164 (1997).

    CAS  PubMed  Google Scholar 

  30. Morote-Garcia, J. C., Rosenberger, P., Nivillac, N. M. I., Coe, I. R. & Eltzschig, H. K. Hypoxia-inducible factor-dependent repression of equilibrative nucleoside transporter 2 attenuates mucosal inflammation during intestinal hypoxia. Gastroenterology 136, 607–618 (2009).

    CAS  PubMed  Google Scholar 

  31. Song, A. et al. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nat. Commun 8, 14108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, H. et al. Beneficial role of erythrocyte adenosine A2B receptor-mediated AMP-activated protein kinase activation in high-altitude hypoxia. Circulation 134, 405–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Eltzschig, H. K. et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med. 202, 1493–1505 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Müller, C. E. & Jacobson, K. A. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim. Biophys. Acta 1808, 1290–1308 (2011).

    PubMed  Google Scholar 

  35. Fredholm, B. B. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 14, 1315–1323 (2007).

    CAS  PubMed  Google Scholar 

  36. Fredholm, B. B., IJzerman, A. P., Jacobson, K. A., Linden, J. & Müller, C. E. International union of basic and clinical pharmacology. LXXXI. nomenclature and classification of adenosine receptors — an update. Pharmacol. Rev. 63, 1–34 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Merighi, S., Gessi, S. & Borea, P. A. in The Adenosine Receptors 33–57 (Humana Press, 2018).

  38. Haskó, G. et al. Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J. Immunol. 164, 1013–1019 (2000).

    PubMed  Google Scholar 

  39. He, B. et al. Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency–induced autoimmunity via adenosine A2A receptors. J. Exp. Med. 214, 107–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Welihinda, A. A., Kaur, M., Greene, K., Zhai, Y. & Amento, E. P. The adenosine metabolite inosine is a functional agonist of the adenosine A2A receptor with a unique signaling bias. Cell. Signal. 28, 552–560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Di Virgilio, F., Sarti, A. C., Falzoni, S., De Marchi, E. & Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 18, 601–618 (2018).

    PubMed  Google Scholar 

  42. Cekic, C. & Linden, J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 16, 177–192 (2016).

    CAS  PubMed  Google Scholar 

  43. Chen, Y. et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314, 1792–1795 (2006).

    CAS  PubMed  Google Scholar 

  44. Aymeric, L. et al. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res. 70, 855–858 (2010).

    CAS  PubMed  Google Scholar 

  45. Antonioli, L., Fornai, M., Blandizzi, C. & Haskó, G. in The Adenosine Receptors 499–514 (Humana Press, 2018).

  46. Vecchio, E. A., White, P. J. & May, L. T. The adenosine A2B G protein-coupled receptor: recent advances and therapeutic implications. Pharmacol. Therapeutics 198, 20–33 (2019).

    CAS  Google Scholar 

  47. Lappas, C. M., Rieger, J. M. & Linden, J. A2A adenosine receptor induction inhibits IFN-γ production in murine CD4+ T cells. J. Immunol. 174, 1073–1080 (2005).

    CAS  PubMed  Google Scholar 

  48. Linnemann, C. et al. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling. Immunology 128, e728–e737 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Bjørgo, E. & Taskén, K. Novel mechanism of signaling by CD28. Immunol. Lett. 129, 1–6 (2010).

    PubMed  Google Scholar 

  50. Zhang, H. et al. Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3’,5’-monophosphate and phosphatases. J. Immunol. 173, 932–944 (2004).

    CAS  PubMed  Google Scholar 

  51. Sorrentino, C. et al. Adenosine A2A receptor stimulation inhibits TCR-induced Notch1 activation in CD8+ T-cells. Front. Immunol. 10, (2019).

  52. Mastelic-Gavillet, B. et al. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells. J. Immunother. Cancer 7, 257 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Raskovalova, T. et al. Inhibition of cytokine production and cytotoxic activity of human antimelanoma specific CD8+ and CD4+ T lymphocytes by adenosine-protein kinase A type I signaling. Cancer Res. 67, 5949–5956 (2007).

    CAS  PubMed  Google Scholar 

  54. Romio, M. et al. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am. J. Physiol. 301, C530–C539 (2011).

    CAS  Google Scholar 

  55. Csóka, B. et al. Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J. 22, 3491–3499 (2008).

    PubMed  PubMed Central  Google Scholar 

  56. Leone, R. D. et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol. Immunother. 67, 1271–1284 (2018).

    CAS  PubMed  Google Scholar 

  57. Ohta, A. et al. The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front. Immunol. 3, 190 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zarek, P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111, 251–259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    CAS  PubMed  Google Scholar 

  61. Mandapathil, M. et al. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J. Biol. Chem. 285, 7176–7186 (2010).

    CAS  PubMed  Google Scholar 

  62. Schuler, P. J. et al. Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin. Exp. Immunol. 177, 531–543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ehrentraut, H., Westrich, J. A., Eltzschig, H. K. & Clambey, E. T. Adora2b adenosine receptor engagement enhances regulatory T cell abundance during endotoxin-induced pulmonary inflammation. PLoS One 7, e32416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kinsey, G. R. et al. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection. J. Am. Soc. Nephrol. 23, 1528–1537 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Minguet, S. et al. Adenosine and cAMP are potent inhibitors of the NF-κB pathway downstream of immunoreceptors. Eur. J. Immunol. 35, 31–41 (2005).

    CAS  PubMed  Google Scholar 

  66. Young, A. et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 78, 1003–1016 (2018).

    CAS  PubMed  Google Scholar 

  67. Raskovalova, T., Lokshin, A., Huang, X., Jackson, E. K. & Gorelik, D. E. Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: involvement of protein kinase A isozyme I (PKA I). Immunol. Res. 36, 91–99 (2006).

    CAS  PubMed  Google Scholar 

  68. Raskovalova, T. et al. Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J. Immunol. 175, 4383–4391 (2005).

    CAS  PubMed  Google Scholar 

  69. Wallace, K. L. & Linden, J. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood 116, 5010–5020 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Csóka, B. et al. Adenosine receptors differentially regulate type 2 cytokine production by IL-33–activated bone marrow cells, ILC2s, and macrophages. FASEB J. 32, 829–837 (2017).

    PubMed Central  Google Scholar 

  71. Hazenberg, M. D. et al. Human ectoenzyme-expressing ILC3: immunosuppressive innate cells that are depleted in graft-versus-host disease. Blood Adv. 3, 3650–3660 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Cohen, H. B., Ward, A., Hamidzadeh, K., Ravid, K. & Mosser, D. M. IFN-γ prevents adenosine receptor (A2bR) upregulation to sustain the macrophage activation response. J. Immunol. 195, 3828–3837 (2015).

    CAS  PubMed  Google Scholar 

  73. Ramanathan, M. et al. Differential regulation of HIF-1α isoforms in murine macrophages by TLR4 and adenosine A2A receptor agonists. J. Leukoc. Biol. 86, 681–689 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Csóka, B. et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 26, 376–386 (2012).

    PubMed  PubMed Central  Google Scholar 

  75. Ferrante, C. J. et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation 36, 921–931 (2013).

    CAS  PubMed  Google Scholar 

  76. Novitskiy, S. V. et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112, 1822–1831 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Challier, J., Bruniquel, D., Sewell, A. K. & Laugel, B. Adenosine and cAMP signalling skew human dendritic cell differentiation towards a tolerogenic phenotype with defective CD8+ T-cell priming capacity. Immunology 138, 402–410 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yago, T. et al. Multi-inhibitory effects of A2A adenosine receptor signaling on neutrophil adhesion under flow. J. Immunol. 195, 3880–3889 (2015).

    CAS  PubMed  Google Scholar 

  79. Fredholm, B. B., Zhang, Y. & van der Ploeg, I. Adenosine A2A receptors mediate the inhibitory effect of adenosine on formyl-Met-Leu-Phe-stimulated respiratory burst in neutrophil leucocytes. Naunyn Schmiedebergs Arch. Pharmacol. 354, 262–267 (1996).

    CAS  PubMed  Google Scholar 

  80. Gao, Z.-G. & Jacobson, K. A. Purinergic signaling in mast cell degranulation and asthma. Front. Pharmacol. 8, 947 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Pellegatti, P. et al. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3, e2599 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    CAS  PubMed  Google Scholar 

  83. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    CAS  PubMed  Google Scholar 

  84. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    CAS  PubMed  Google Scholar 

  85. Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    CAS  PubMed  Google Scholar 

  86. Li, X.-Y. et al. Targeting CD39 in cancer reveals an extracellular ATP- and inflammasome-driven tumor immunity. Cancer Discov. 9, 1754–1773 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yan, J. et al. Control of metastases via myeloid CD39 and NK cell effector function. Cancer Immunol. Res. 8, 356–367 (2020).

    CAS  PubMed  Google Scholar 

  88. Allard, B., Beavis, P. A., Darcy, P. K. & Stagg, J. Immunosuppressive activities of adenosine in cancer. Curr. Opin. Pharmacol. 29, 7–16 (2016).

    CAS  PubMed  Google Scholar 

  89. Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vijayan, D., Young, A., Teng, M. W. L. & Smyth, M. J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 765 (2017).

    CAS  PubMed  Google Scholar 

  91. Clayton, A., Al-Taei, S., Webber, J., Mason, M. D. & Tabi, Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J. Immunol. 187, 676–683 (2011).

    CAS  PubMed  Google Scholar 

  92. Houthuys, E. et al. EOS100850, an insurmountable and non-brain penetrant A2A receptor antagonist, inhibits adenosine-mediated T cell suppression, demonstrates anti-tumor activity and exhibits best-in class characteristics [abstract LB-291]. Cancer Res. 78, LB-291 (2018).

    Google Scholar 

  93. Hatfield, S. M. et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J. Mol. Med. 92, 1283–1292 (2014).

    CAS  PubMed  Google Scholar 

  94. Eltzschig, H. K. et al. Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113, 224–232 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kong, T., Westerman, K. A., Faigle, M., Eltzschig, H. K. & Colgan, S. P. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 20, 2242–2250 (2006).

    CAS  PubMed  Google Scholar 

  97. Ahmad, A. et al. Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc. Natl Acad. Sci. USA 106, 10684–10689 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bowser, J. L., Lee, J. W., Yuan, X. & Eltzschig, H. K. The hypoxia-adenosine link during inflammation. J. Appl. Physiol. 123, 1303–1320 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 7, 277ra30 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ryzhov, S. V. et al. Role of TGF-β signaling in generation of CD39+ CD73+ myeloid cells in tumors. J. Immunol. 193, 3155–3164 (2014).

    CAS  PubMed  Google Scholar 

  101. Regateiro, F. S. et al. Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-β. Eur. J. Immunol. 41, 2955–2965 (2011).

    CAS  PubMed  Google Scholar 

  102. Li, J. et al. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology 6, e1320011 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Lawrence, R. T. et al. The proteomic landscape of triple-negative breast cancer. Cell Rep. 11, 630–644 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sunaga, N. et al. Knockdown of oncogenic KRAS in non-small cell lung cancers suppresses tumor growth and sensitizes tumor cells to targeted therapy. Mol. Cancer Ther. 10, 336–346 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Inoue, Y. et al. Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer. Oncotarget 8, 8738–8751 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Udyavar, A. R. et al. Altered pan-Ras pathway and activating mutations in EGFR result in elevated CD73 in multiple cancers [abstract 4980]. Cancer Res. 79 (Suppl.), 4980–4980 (2019).

    Google Scholar 

  107. Reinhardt, J. et al. MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy. Cancer Res. 77, 4697–4709 (2017).

    CAS  PubMed  Google Scholar 

  108. Turcotte, M. et al. CD73 promotes resistance to HER2/ErbB2 antibody therapy. Cancer Res. 77, 5652–5663 (2017).

    CAS  PubMed  Google Scholar 

  109. García-Rocha, R. et al. Cervical cancer cells produce TGF-β1 through the CD73-adenosine pathway and maintain CD73 expression through the autocrine activity of TGF-β1. Cytokine 118, 71–79 (2019).

    PubMed  Google Scholar 

  110. Spychala, J. & Kitajewski, J. Wnt and β-catenin signaling target the expression of ecto-5′-nucleotidase and increase extracellular adenosine generation. Exp. Cell Res. 296, 99–108 (2004).

    CAS  PubMed  Google Scholar 

  111. Turcotte, M. et al. CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res. 75, 4494–4503 (2015).

    CAS  PubMed  Google Scholar 

  112. Lupia, M. et al. CD73 regulates stemness and epithelial-mesenchymal transition in ovarian cancer-initiating cells. Stem Cell Rep. 10, 1412–1425 (2018).

    CAS  Google Scholar 

  113. Song, Y., Song, C. & Yang, S. Tumor-suppressive function of miR-30d-5p in prostate cancer cell proliferation and migration by targeting NT5E. Cancer Biother. Radiopharm. 33, 203–211 (2018).

    PubMed  Google Scholar 

  114. Wang, H. et al. NT5E (CD73) is epigenetically regulated in malignant melanoma and associated with metastatic site specificity. Br. J. Cancer 106, 1446–1452 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Spychala, J. et al. Role of estrogen receptor in the regulation of ecto-5’-nucleotidase and adenosine in breast cancer. Clin. Cancer Res. 10, 708–717 (2004).

    CAS  PubMed  Google Scholar 

  116. Zhu, J. et al. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol. Cancer 16, 34 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Bonnin, N. et al. MiR-422a promotes loco-regional recurrence by targeting NT5E/CD73 in head and neck squamous cell carcinoma. Oncotarget 7, 44023–44038 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. Mousavi, S., Panjehpour, M., Izadpanahi, M. H. & Aghaei, M. Expression of adenosine receptor subclasses in malignant and adjacent normal human prostate tissues. Prostate 75, 735–747 (2015).

    CAS  PubMed  Google Scholar 

  119. Horenstein, A. L. et al. Adenosine generated in the bone marrow niche through a CD38-mediated pathway correlates with progression of human myeloma. Mol. Med. 22, 694–704 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen, L. et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 8, 1156–1175 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Morandi, F. et al. A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation. Oncotarget 6, 25602–25618 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Kukulski, F. et al. Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal. 1, 193–204 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ma, X.-L. et al. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110β and predicts poor prognosis. J. Hematol. Oncol. 12, 37 (2019).

    PubMed  PubMed Central  Google Scholar 

  124. Shi, L. et al. Adenosine interaction with adenosine receptor A2a promotes gastric cancer metastasis by enhancing PI3K-AKT-mTOR signaling. Mol. Biol. Cell 30, 2527–2534 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mittal, D. et al. Adenosine 2B receptor expression on cancer cells promotes metastasis. Cancer Res. 76, 4372–4382 (2016).

    CAS  PubMed  Google Scholar 

  126. Yi, Y. et al. Blockade of adenosine A2b receptor reduces tumor growth and migration in renal cell carcinoma. J. Cancer 11, 421–431 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou, Y. et al. The adenosine A2b receptor promotes tumor progression of bladder urothelial carcinoma by enhancing MAPK signaling pathway. Oncotarget 8, 48755–48768 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Zhi, X. et al. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci. 101, 2561–2569 (2010).

    CAS  PubMed  Google Scholar 

  129. Zhou, J. Z. et al. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene 34, 1831–1842 (2015).

    CAS  PubMed  Google Scholar 

  130. Beavis, P. A. et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc. Natl Acad. Sci. USA 110, 14711–14716 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Desmet, C. J. et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc. Natl Acad. Sci. USA 110, 5139–5144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ntantie, E. et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci. Signal. 6, ra39 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Pastushenko, I. & Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212–226 (2019).

    CAS  PubMed  Google Scholar 

  134. Lan, J. et al. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc. Natl Acad. Sci. USA 115, E9640–E9648 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, T. et al. The HIF-2alpha dependent induction of PAP and adenosine synthesis regulates glioblastoma stem cell function through the A2B adenosine receptor. Int. J. Biochem. Cell Biol. 49, 8–16 (2014).

    PubMed  Google Scholar 

  136. Ma, X.-L. et al. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma. J. Hematol. Oncol. 13, 11 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Xiong, L., Wen, Y., Miao, X. & Yang, Z. NT5E and FcGBP as key regulators of TGF-1-induced epithelial-mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer. Cell Tissue Res. 355, 365–374 (2014).

    CAS  PubMed  Google Scholar 

  138. Sidders, B. et al. Adenosine signalling is prognostic for cancer outcome and has predictive utility for immunotherapeutic response. Clin. Cancer Res. 26, 2176–2187 (2020).

    CAS  PubMed  Google Scholar 

  139. Sadej, R. & Skladanowskic, A. C. Dual, enzymatic and non-enzymatic, function of ecto-5’-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells. Acta Biochim. Pol. 59, 647–652 (2012).

    CAS  PubMed  Google Scholar 

  140. Gao, Z. et al. CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity. BMC Cancer 17, 135 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Zhou, L. et al. The distinct role of CD73 in the progression of pancreatic cancer. J. Mol. Med. 97, 803–815 (2019).

    CAS  PubMed  Google Scholar 

  142. Yu, M. et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat. Commun. 11, 515 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479.e10 (2018).

    CAS  PubMed  Google Scholar 

  144. Mediavilla-Varela, M. et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol. Ther. 14, 860–868 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Sorrentino, C., Miele, L., Porta, A., Pinto, A. & Morello, S. Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression. Oncotarget 7, 64274–64288 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. Thompson, L. F. et al. Crucial role for Ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Airas, L., Niemelä, J. & Jalkanen, S. CD73 engagement promotes lymphocyte binding to endothelial cells Via a lymphocyte function-associated antigen-1-dependent mechanism. J. Immunol. 165, 5411–5417 (2000).

    CAS  PubMed  Google Scholar 

  148. Takedachi, M. et al. CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J. Immunol. 180, 6288–6296 (2008).

    CAS  PubMed  Google Scholar 

  149. Liu, Z. et al. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat. Commun. 8, 584 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Desai, A. Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol. Pharmacol. 67, 1406–1413 (2005).

    CAS  PubMed  Google Scholar 

  151. Allard, B. et al. Anti-CD73 therapy impairs tumor angiogenesis. Int. J. Cancer 134, 1466–1473 (2014).

    CAS  PubMed  Google Scholar 

  152. Wang, L. et al. Ecto-5′-nucleotidase (CD73) promotes tumor angiogenesis. Clin. Exp. Metastasis 30, 671–680 (2013).

    CAS  PubMed  Google Scholar 

  153. Siu, L. L. et al. Preliminary phase 1 profile of BMS-986179, an anti-CD73 antibody, in combination with nivolumab in patients with advanced solid tumors [abstract CT180]. Cancer Res. 78 (Suppl.), CT180–CT180 (2018).

    Google Scholar 

  154. Allard, B. et al. Adenosine A2a receptor promotes lymphangiogenesis and lymph node metastasis. Oncoimmunology 8, 1601481 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Hammami, A., Allard, D., Allard, B. & Stagg, J. Targeting the adenosine pathway for cancer immunotherapy. Semin. Immunol. 42, 101304 (2019).

    CAS  PubMed  Google Scholar 

  156. Vigano, S. et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front. Immunol. 10, 925 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Mittal, D. et al. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res. 74, 3652–3658 (2014).

    CAS  PubMed  Google Scholar 

  158. Zhang, H. et al. The role of NK cells and CD39 in the immunological control of tumor metastases. Oncoimmunology 8, e1593809 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Perrot, I. et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 27, 2411–2425.e9 (2019).

    CAS  PubMed  Google Scholar 

  160. Cekic, C., Day, Y.-J., Sag, D. & Linden, J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 74, 7250–7259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Cekic, C. et al. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J. Immunol. 188, 198–205 (2012).

    CAS  PubMed  Google Scholar 

  162. Ryzhov, S. et al. Host A2B adenosine receptors promote carcinoma growth. Neoplasia 10, 987–995 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ryzhov, S. et al. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+ Gr1+ cells. J. Immunol. 187, 6120–6129 (2011).

    CAS  PubMed  Google Scholar 

  164. Sorrentino, C., Miele, L., Porta, A., Pinto, A. & Morello, S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 6, 27478–27489 (2015).

    PubMed  PubMed Central  Google Scholar 

  165. Iannone, R., Miele, L., Maiolino, P., Pinto, A. & Morello, S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 15, 1400–1409 (2013).

    PubMed  PubMed Central  Google Scholar 

  166. Gourdin, N. et al. Autocrine adenosine regulates tumor polyfunctional CD73+ CD4+ effector T cells devoid of immune checkpoints. Cancer Res. 78, 3604–3618 (2018).

    CAS  PubMed  Google Scholar 

  167. Beavis, P. A. et al. Adenosine receptor 2A blockade increases the efficacy of anti–PD-1 through enhanced antitumor T-cell responses. Cancer Immunol. Res. 3, 506–517 (2015).

    CAS  PubMed  Google Scholar 

  168. Himer, L. et al. Adenosine A2A receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J. 24, 2631–2640 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Cekic, C. & Linden, J. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Res. 74, 7239–7249 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Cekic, C., Sag, D., Day, Y.-J. & Linden, J. Extracellular adenosine regulates naive T cell development and peripheral maintenance. J. Exp. Med. 210, 2693–2706 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Mandapathil, M. et al. Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer. Clin. Cancer Res. 15, 6348–6357 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Mandapathil, M. et al. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J. Biol. Chem. 285, 27571–27580 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kaji, W., Tanaka, S., Tsukimoto, M. & Kojima, S. Adenosine A2B receptor antagonist PSB603 suppresses tumor growth and metastasis by inhibiting induction of regulatory T cells. J. Toxicol. Sci. 39, 191–198 (2014).

    CAS  PubMed  Google Scholar 

  175. Loi, S. et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc. Natl Acad. Sci. USA 110, 11091–11096 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Young, A. et al. Targeting adenosine in BRAF-mutant melanoma reduces tumor growth and metastasis. Cancer Res. 77, 4684–4696 (2017).

    CAS  PubMed  Google Scholar 

  177. Allard, D., Chrobak, P., Allard, B., Messaoudi, N. & Stagg, J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol. Lett. 205, 31–39 (2019).

    CAS  PubMed  Google Scholar 

  178. Koivisto, M. K. et al. Cell-type-specific CD73 expression is an independent prognostic factor in bladder cancer. Carcinogenesis 40, 84–92 (2019).

    CAS  PubMed  Google Scholar 

  179. Bowser, J. L. et al. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J. Clin. Invest. 126, 220–238 (2016).

    PubMed  Google Scholar 

  180. Leclerc, B. G. et al. CD73 expression is an independent prognostic factor in prostate cancer. Clin. Cancer Res. 22, 158–166 (2016).

    CAS  PubMed  Google Scholar 

  181. Jiang, T. et al. Comprehensive evaluation of NT5E/CD73 expression and its prognostic significance in distinct types of cancers. BMC Cancer 18, 267 (2018).

    PubMed  PubMed Central  Google Scholar 

  182. Wang, R., Zhang, Y., Lin, X., Gao, Y. & Zhu, Y. Prognositic value of CD73-adenosinergic pathway in solid tumor: A meta-analysis and systematic review. Oncotarget 8, 57327–57336 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Buisseret, L. et al. Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial. Ann. Oncol. 29, 1056–1062 (2018).

    CAS  PubMed  Google Scholar 

  184. Morello, S. et al. Soluble CD73 as biomarker in patients with metastatic melanoma patients treated with nivolumab. J. Transl. Med. 15, 244 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhang, F. et al. Specific decrease in B-Cell-derived extracellular vesicles enhances post-chemotherapeutic CD8+ T cell responses. Immunity 50, 738–750.e7 (2019).

    CAS  PubMed  Google Scholar 

  186. Ibrahim, S. et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood 98, 181–186 (2001).

    CAS  PubMed  Google Scholar 

  187. Perry, C. et al. Increased CD39 expression on CD4+ T lymphocytes has clinical and prognostic significance in chronic lymphocytic leukemia. Ann. Hematol. 91, 1271–1279 (2012).

    CAS  PubMed  Google Scholar 

  188. Pinna, A. Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 28, 455–474 (2014).

    CAS  PubMed  Google Scholar 

  189. Hay, C. M. et al. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology 5, e1208875 (2016).

    PubMed  PubMed Central  Google Scholar 

  190. Young, A. et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30, 391–403 (2016).

    CAS  PubMed  Google Scholar 

  191. Schindler, U. et al. AB680, a potent and selective CD73 small molecule inhibitor, reverses the AMP/adenosine-mediated impairment of immune effector cell activation by immune checkpoint inhibitors. Eur. J. Cancer 92 (Suppl. 1), S14 (2018).

    Google Scholar 

  192. Lee, C. C. et al. Reversal of adenosine-mediated immune suppression by CB-708, an orally bioavailable and potent small molecule inhibitor of CD73 [abstract 4134]. Cancer Res. 79 (Suppl.), 4134–4134 (2019).

    Google Scholar 

  193. Fong, L. et al. Adenosine A2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 10, 40–53 (2020).

    CAS  PubMed  Google Scholar 

  194. Harshman, L. C. et al. Adenosine receptor blockade with ciforadenant +/– atezolizumab in advanced metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 38, 129–129 (2020).

    Google Scholar 

  195. Bendell, J. et al. Evidence of immune activation in the first-in-human Phase Ia dose escalation study of the adenosine 2a receptor antagonist, AZD4635, in patients with advanced solid tumors [abstract CT026]. Cancer Res. 79 (Suppl.), CT026–CT026 (2019).

    Google Scholar 

  196. Chiappori, A. et al. Phase I/II study of the A2AR antagonist NIR178 (PBF-509), an oral immunotherapy, in patients (pts) with advanced NSCLC. J. Clin. Oncol. 36, 9089–9089 (2018).

    Google Scholar 

  197. Seitz, L. et al. Safety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteers. Invest. New Drugs 37, 711–721 (2019).

    CAS  PubMed  Google Scholar 

  198. Overman, M. J. et al. Safety, efficacy and pharmacodynamics (PD) of MEDI9447 (oleclumab) alone or in combination with durvalumab in advanced colorectal cancer (CRC) or pancreatic cancer (panc). J. Clin. Oncol. 36, 4123–4123 (2018).

    Google Scholar 

  199. Luke, J. J. et al. Immunobiology and clinical activity of CPI-006, an anti-CD73 antibody with immunomodulating properties in a phase 1/1b trial in advanced cancers. https://www.corvuspharma.com/file.cfm/23/docs/SITCFINAL_2019_11052019_vs1.pdf (2019).

  200. Powderly, J. et al. Phase 1 evaluation of AB928, a novel dual adenosine receptor antagonist, combined with chemotherapy or AB122 (anti-PD-1) in patients (pts) with advanced malignancies. Ann. Oncol. 30 (Suppl. 5), v475–v532 (2019).

    Google Scholar 

  201. DiRenzo, D. et al. AB928, a dual antagonist of the A2aR and A2bR adenosine receptors, relieves adenosine-mediated immune suppression [abstract A162]. Cancer Immunol. Res. 7 (Suppl.), A162–A162 (2019).

    Google Scholar 

  202. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    CAS  PubMed  Google Scholar 

  203. Maurer, C. et al. 195TiPSYNERGY: Phase I and randomized phase II trial to investigate the addition of the anti-CD73 antibody oleclumab to durvalumab, paclitaxel and carboplatin for previously untreated, locally recurrent inoperable or metastatic triple-negative breast cancer (TNBC). Ann. Oncol. 30 (Suppl. 3), ii47–iii64 (2019).

    Google Scholar 

  204. Nakamura, K. et al. Targeting an adenosine-mediated “don’t eat me signal” augments anti-lymphoma immunity by anti-CD20 monoclonal antibody. Leukemia https://doi.org/10.1038/s41375-020-0811-3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Tokunaga, R. et al. Prognostic effect of adenosine-related genetic variants in metastatic colorectal cancer treated with bevacizumab-based chemotherapy. Clin. Colorectal Cancer 18, e8–e19 (2019).

    PubMed  Google Scholar 

  206. Beavis, P. A. et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Invest. 127, 929–941 (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Allard, B., Pommey, S., Smyth, M. J. & Stagg, J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin. Cancer Res. 19, 5626–5635 (2013).

    CAS  PubMed  Google Scholar 

  208. Beavis, P. A. et al. Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol. Res. 3, 506–517 (2015).

    CAS  PubMed  Google Scholar 

  209. Chen, S. et al. CD73 expression on effector T cells sustained by TGF-β facilitates tumor resistance to anti-4-1BB/CD137 therapy. Nat. Commun. 10, 150 (2019).

    PubMed  PubMed Central  Google Scholar 

  210. Wirsdörfer, F. et al. Extracellular adenosine production by ecto-5’-nucleotidase (CD73) enhances radiation-induced lung fibrosis. Cancer Res. 76, 3045–3056 (2016).

    PubMed  PubMed Central  Google Scholar 

  211. Wennerberg, E. et al. CD73 blockade promotes dendritic cell infiltration of irradiated tumors and tumor rejection. Cancer Immunol. Res. 8, 465–478 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Lohman, A. W., Billaud, M. & Isakson, B. E. Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovascular Res. 95, 269–280 (2012).

    CAS  Google Scholar 

  213. Enjyoji, K. et al. Targeted disruption of cd39 /ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat. Med. 5, 1010–1017 (1999).

    CAS  PubMed  Google Scholar 

  214. Yadav, V. et al. Ectonucleotidase tri(di)phosphohydrolase-1 (ENTPD-1) disrupts inflammasome/interleukin 1β-driven venous thrombosis. J. Clin. Invest. 129, 2872–2877 (2019).

    PubMed  PubMed Central  Google Scholar 

  215. Berwick, Z. C. et al. Contribution of adenosine A2A and A2B receptors to ischemic coronary dilation: role of KV and KATP channels. Microcirculation 17, 600–607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. St. Hilaire, C. et al. NT5E mutations and arterial calcifications. N. Engl. J. Med. 364, 432–442 (2011).

    Google Scholar 

  217. Jin, H. et al. Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC. Sci. Signal. 9, ra121 (2016).

    PubMed  PubMed Central  Google Scholar 

  218. Kishore, B. K., Robson, S. C. & Dwyer, K. M. CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal. 14, 109–120 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Rabadi, M. M. & Lee, H. T. Adenosine receptors and renal ischaemia reperfusion injury. Acta Physiologica 213, 222–231 (2015).

    CAS  PubMed  Google Scholar 

  220. Sung, S.-S. J. et al. Proximal tubule CD73 is critical in renal ischemia-reperfusion injury protection. J. Am. Soc. Nephrol. 28, 888–902 (2017).

    CAS  PubMed  Google Scholar 

  221. Seethapathy, H. et al. The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors. Clin. J. Am. Soc. Nephrol. 14, 1692–1700 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Perruzza, L. et al. T follicular helper cells promote a beneficial gut ecosystem for host metabolic homeostasis by sensing microbiota-derived extracellular ATP. Cell Rep. 18, 2566–2575 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Friedman, D. J. et al. From the cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc. Natl Acad. Sci. USA 106, 16788–16793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Patel, N. et al. A2B adenosine receptor induces protective antihelminth type 2 immune responses. Cell Host Microbe 15, 339–350 (2014).

    CAS  PubMed  Google Scholar 

  225. Kao, D. J. et al. Intestinal epithelial ecto-5′-nucleotidase (CD73) regulates intestinal colonization and infection by nontyphoidal salmonella. Infect. Immun. 85, e01022-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  226. Aherne, C. M. et al. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol. 8, 1324–1338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Kurtz, C. C. et al. Extracellular adenosine regulates colitis through effects on lymphoid and nonlymphoid cells. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G338–G346 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Mabley, J. et al. The adenosine A3 receptor agonist, N6-(3-iodobenzyl)-adenosine-5’-N-methyluronamide, is protective in two murine models of colitis. Eur. J. Pharmacol. 466, 323–329 (2003).

    CAS  PubMed  Google Scholar 

  229. Vuerich, M., Robson, S. C. & Longhi, M. S. Ectonucleotidases in intestinal and hepatic inflammation. Front. Immunol. 10, 507 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Enjyoji, K. et al. Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes 57, 2311–2320 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Csóka, B. et al. A2A adenosine receptors control pancreatic dysfunction in high-fat-diet-induced obesity. FASEB J. 31, 4985–4997 (2017).

    PubMed  PubMed Central  Google Scholar 

  232. Zhou, J. et al. Mice lacking adenosine 2A receptor reveal increased severity of MCD-induced NASH. J. Endocrinol. 243, 199–209 (2019).

    CAS  Google Scholar 

  233. Cai, Y. et al. Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology 68, 48–61 (2018).

    CAS  PubMed  Google Scholar 

  234. Peng, Z. et al. Ecto-5′-nucleotidase (CD73) -mediated extracellular adenosine production plays a critical role in hepatic fibrosis. FASEB J. 22, 2263–2272 (2008).

    CAS  PubMed  Google Scholar 

  235. Chan, E. S. L. et al. Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis. Br. J. Pharmacol. 148, 1144–1155 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Peng, Z. et al. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J. Clin. Invest. 119, 582–594 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Mediero, A., Wilder, T., Shah, L. & Cronstein, B. N. Adenosine A2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis. FASEB J. 32, 3487–3501 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Mediero, A., Wilder, T., Perez-Aso, M. & Cronstein, B. N. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J. 29, 1577–1590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. He, W. & Cronstein, B. N. Adenosine A1 receptor regulates osteoclast formation by altering TRAF6/TAK1 signaling. Purinergic Signal. 8, 327–337 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Shih, Y.-R. V. et al. Dysregulation of ectonucleotidase-mediated extracellular adenosine during postmenopausal bone loss. Sci. Adv. 5, eaax1387 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Takedachi, M. et al. CD73-generated adenosine promotes osteoblast differentiation. J. Cell Physiol. 227, 2622–2631 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Corciulo, C., Wilder, T. & Cronstein, B. N. Adenosine A2B receptors play an important role in bone homeostasis. Purinergic Signal. 12, 537–547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Ryan, R., Cleary, S., O’Shaughnessy, K. & Yasmin. An NT5E gene polymorphism associates with low bone mineral density in chronic kidney disease patients. J. Clin. Res. Med. 1, 1–9 (2018).

    Google Scholar 

  244. Cunha, R. A. How does adenosine control neuronal dysfunction and neurodegeneration? J. Neurochem. 139, 1019–1055 (2016).

    CAS  PubMed  Google Scholar 

  245. Johansson, B. et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc. Natl Acad. Sci. USA 98, 9407–9412 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Aoyama, S., Kase, H. & Borrelli, E. Rescue of locomotor impairment in dopamine D2 receptor-deficient mice by an adenosine A2A receptor antagonist. J. Neurosci. 20, 5848–5852 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Kim, D.-G. & Bynoe, M. S. A2A adenosine receptor regulates the human blood-brain barrier permeability. Mol. Neurobiol. 52, 664–678 (2015).

    CAS  PubMed  Google Scholar 

  248. Wei, C. J., Li, W. & Chen, J.-F. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim. Biophys. Acta 1808, 1358–1379 (2011).

    CAS  PubMed  Google Scholar 

  249. Hinz, S. et al. Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget 9, 13593–13611 (2018).

    PubMed  PubMed Central  Google Scholar 

  250. Allard, D., Allard, B. & Stagg, J. On the mechanism of anti-CD39 immune checkpoint therapy. J. Immunother. Cancer 8, (2020).

  251. Borges da Silva, H. et al. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature 559, 264–268 (2018).

    CAS  PubMed  Google Scholar 

  252. Sadej, R. et al. Tenascin C interacts with Ecto-5′-nucleotidase (eN) and regulates adenosine generation in cancer cells. Biochim. Biophys. Acta 1782, 35–40 (2008).

    CAS  PubMed  Google Scholar 

  253. Garavaglia, S. et al. The high-resolution crystal structure of periplasmic Haemophilus influenzae NAD nucleotidase reveals a novel enzymatic function of human CD73 related to NAD metabolism. Biochem. J. 441, 131–141 (2012).

    CAS  PubMed  Google Scholar 

  254. Wilk, A. et al. Extracellular NAD+ enhances PARP-dependent DNA repair capacity independently of CD73 activity. Sci. Rep. 10, 651 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of D.A. is supported by a doctoral scholarship from the Fonds Recherche Santé – Québec. The work of J.S. is supported by research grants from the Canadian Institutes of Health Research, the Terry Fox Research Institute and the Canadian Cancer Society. J.S. acknowledges research support from the Jean-Guy Sabourin Research Chair in Pharmacology.

Author information

Authors and Affiliations

Authors

Contributions

D.A. and L.B. made substantial contributions to the discussion of content. B.A., D.A., L.B. and J.S. wrote the manuscript. B.A. and J.S. reviewed/edited the manuscript before submission and subsequently revised the manuscript. B.A. and D.A. designed the figures. D.A. and L.B. compiled the tables, and J.S. compiled the boxes.

Corresponding author

Correspondence to John Stagg.

Ethics declarations

Competing interests

J.S. is a permanent member of the scientific advisory board and holds stocks of Surface Oncology. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Clinical Oncology thanks the four anonymous reviewers for their contribution to the peer review of this work.

Related links

Xena: https://xena.ucsc.edu/

Xena Help Page: https://ucsc-xena.gitbook.io/project/how-do-i/tumor-vs-normal

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allard, B., Allard, D., Buisseret, L. et al. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol 17, 611–629 (2020). https://doi.org/10.1038/s41571-020-0382-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0382-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer