Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hypothalamic syndrome

Abstract

Hypothalamic syndrome (HS) is a rare disorder caused by disease-related and/or treatment-related injury to the hypothalamus, most commonly associated with rare, non-cancerous parasellar masses, such as craniopharyngiomas, germ cell tumours, gliomas, cysts of Rathke’s pouch and Langerhans cell histiocytosis, as well as with genetic neurodevelopmental syndromes, such as Prader–Willi syndrome and septo-optic dysplasia. HS is characterized by intractable weight gain associated with severe morbid obesity, multiple endocrine abnormalities and memory impairment, attention deficit and reduced impulse control as well as increased risk of cardiovascular and metabolic disorders. Currently, there is no cure for this condition but treatments for general obesity are often used in patients with HS, including surgery, medication and counselling. However, these are mostly ineffective and no medications that are specifically approved for the treatment of HS are available. Specific challenges in HS are because the syndrome represents an adverse effect of different diseases, and that diagnostic criteria, aetiology, pathogenesis and management of HS are not completely defined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy and connectivity of the hypothalamus.
Fig. 2: Integration of the hypothalamus with the limbic system.
Fig. 3: Neuroradiological presentations in hypothalamic syndrome.

Similar content being viewed by others

References

  1. Zacharia, B. E. et al. Incidence, treatment and survival of patients with craniopharyngioma in the Surveillance, Epidemiology and End Results Program. Neurooncology 14, 1070–1078 (2012).

    Google Scholar 

  2. Muller, H. L., Merchant, T. E., Warmuth-Metz, M., Martinez-Barbera, J. P. & Puget, S. Craniopharyngioma. Nat. Rev. Dis. Prim. 5, 75 (2019).

    Article  PubMed  Google Scholar 

  3. van Iersel, L. et al. Pathophysiology and individualized treatment of hypothalamic obesity following craniopharyngioma and other suprasellar tumors: a systematic review. Endocr. Rev. 40, 193–235 (2019). A comprehensive review of hypothalamic dysfunction and all reported interventions aiming to improve hypothalamic obesity, and a proposed treatment algorithm.

    Article  PubMed  Google Scholar 

  4. Muller, H. L. Craniopharyngioma and hypothalamic injury: latest insights into consequent eating disorders and obesity. Curr. Opin. Endocrinol. Diabetes Obes. 23, 81–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Muller, H. L. Consequences of craniopharyngioma surgery in children. J. Clin. Endocrinol. Metab. 96, 1981–1991 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Muller, H. L. The diagnosis and treatment of craniopharyngioma. Neuroendocrinology 110, 753–766 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Sterkenburg, A. S. et al. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neurooncology 17, 1029–1038 (2015). A a 20-year follow-up analysis of 485 patients with childhood-onset craniopharyngioma that showed impaired overall survival in patients with hypothalamic involvement. Relapse and progression rates were similar with regard to different degrees of resection (gross total resection versus incomplete resection).

    Google Scholar 

  8. Otte, A. & Müller, H. L. Childhood-onset craniopharyngioma. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgab397 (2021). A recent comprehensive review of craniopharyngioma.

    Article  PubMed  Google Scholar 

  9. Muller, H. L., Merchant, T. E., Puget, S. & Martinez-Barbera, J. P. New outlook on the diagnosis, treatment and follow-up of childhood-onset craniopharyngioma. Nat. Rev. Endocrinol. 13, 299–312 (2017).

    Article  PubMed  Google Scholar 

  10. Harz, K. J., Muller, H. L., Waldeck, E., Pudel, V. & Roth, C. Obesity in patients with craniopharyngioma: assessment of food intake and movement counts indicating physical activity. J. Clin. Endocrinol. Metab. 88, 5227–5231 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Prader, A. Ein Syndrom von adipositas, kleinwuchs, kryptorchismus und oligophrenie nach myatonieartigem zustand im neugeborenenalter [German]. Schweiz. Med. Wochenschr. 86, 1260–1261 (1956).

    Google Scholar 

  12. Cemeroglu, A. P., Coulas, T. & Kleis, L. Spectrum of clinical presentations and endocrinological findings of patients with septo-optic dysplasia: a retrospective study. J. Pediatr. Endocrinol. Metab. 28, 1057–1063 (2015).

    Article  PubMed  Google Scholar 

  13. Tauber, M. & Hoybye, C. Endocrine disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 9, 235–246 (2021). A recent comprehensive review of hypothalamic dysfunction in patients with PWS.

    Article  CAS  PubMed  Google Scholar 

  14. Muller, H. L. Management of endocrine disease: childhood-onset craniopharyngioma: state of the art of care in 2018. Eur. J. Endocrinol. 180, R159–R174 (2019).

    Article  PubMed  Google Scholar 

  15. Muller, H. L. Hypothalamic involvement in craniopharyngioma – implications for surgical, radiooncological, and molecularly targeted treatment strategies. Pediatr. blood cancer 65, e26936 (2018).

    Article  PubMed  Google Scholar 

  16. Parkinson, W. L. & Weingarten, H. P. Dissociative analysis of ventromedial hypothalamic obesity syndrome. Am. J. Physiol. 259, R829–R835 (1990).

    CAS  PubMed  Google Scholar 

  17. Bunin, G. R. et al. The descriptive epidemiology of craniopharyngioma. J. Neurosurg. 89, 547–551 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Santagata, S., Kleinschmidt-DeMasters, B. K., Komori, T., Müller, H. L., Pietsch, T. in Central Nervous System Tumours. WHO Classification of Tumours 5th edn Vol. 6 (WHO Classification of Tumours Editorial Board) 393–396 (IARC, 2021).

  19. Hafez, M. A., ElMekkawy, S., AbdelBadie, H., Mohy, M. & Omar, M. Pediatric craniopharyngioma – rationale for multimodal management: the Egyptian experience. J. Pediatr. Endocrinol. Metab. 19 (Suppl. 1), 371–380 (2006).

    PubMed  Google Scholar 

  20. Zhang, Y. Q., Wang, C. C. & Ma, Z. Y. Pediatric craniopharyngiomas: clinicomorphological study of 189 cases. Pediatr. Neurosurg. 36, 80–84 (2002).

    Article  PubMed  Google Scholar 

  21. Adeloye, A., Nottidge, V. A. & Udi, J. Craniopharyngioma in Nigerian children. Childs Nerv. Syst. 4, 128–134 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Ersahin, Y., Yurtseven, T., Ozgiray, E. & Mutluer, S. Craniopharyngiomas in children: Turkey experience. Childs Nerv. Syst. 21, 766–772 (2005).

    Article  PubMed  Google Scholar 

  23. Amayiri, N. et al. Review of management and morbidity of pediatric craniopharyngioma patients in a low-middle-income country: a 12-year experience. Childs Nerv. Syst. 33, 941–950 (2017).

    Article  PubMed  Google Scholar 

  24. Chaudhry, N. S., Raber, M. R., Cote, D. J. & Laws, E. R. Jr. Spontaneous pituitary adenoma occurring after resection of a Rathke’s cleft cyst. J. Clin. Neurosci. 33, 247–251 (2016).

    Article  PubMed  Google Scholar 

  25. Suh, Y. L. et al. Tumors of the central nervous system in Korea: a multicenter study of 3221 cases. J. Neurooncol. 56, 251–259 (2002).

    Article  PubMed  Google Scholar 

  26. Gittleman, H. et al. Descriptive epidemiology of germ cell tumors of the central nervous system diagnosed in the United States from 2006 to 2015. J. Neurooncol. 143, 251–260 (2019).

    Article  PubMed  Google Scholar 

  27. Kakkar, A. et al. Erratum to: Intracranial germ cell tumors: a multi-institutional experience from three tertiary care centers in India. Childs Nerv. Syst. 32, 2181 (2016).

    Article  PubMed  Google Scholar 

  28. Keene, D. et al. Epidemiological survey of central nervous system germ cell tumors in Canadian children. J. Neurooncol. 82, 289–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S. H. et al. Nationwide population-based incidence and survival rates of malignant central nervous system germ cell tumors in Korea, 2005-2012. Cancer Res. Treat. 49, 494–501 (2017).

    Article  PubMed  Google Scholar 

  30. Kuratsu, J., Takeshima, H. & Ushio, Y. Trends in the incidence of primary intracranial tumors in Kumamoto, Japan. Int. J. Clin. Oncol. 6, 183–191 (2001).

    CAS  PubMed  Google Scholar 

  31. Peckham-Gregory, E. C. et al. Evaluation of racial disparities in pediatric optic pathway glioma incidence: results from the Surveillance, Epidemiology, and End Results Program, 2000-2014. Cancer Epidemiol. 54, 90–94 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Avery, R. A. et al. Quantitative MRI criteria for optic pathway enlargement in neurofibromatosis type 1. Neurology 86, 2264–2270 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guyot-Goubin, A. et al. Descriptive epidemiology of childhood Langerhans cell histiocytosis in France, 2000-2004. Pediatr. Blood Cancer 51, 71–75 (2008).

    Article  PubMed  Google Scholar 

  34. Salotti, J. A. et al. Incidence and clinical features of Langerhans cell histiocytosis in the UK and Ireland. Arch. Dis. Child. 94, 376–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Horibe, K. et al. Incidence and survival rates of hematological malignancies in Japanese children and adolescents (2006-2010): based on registry data from the Japanese Society of Pediatric Hematology. Int. J. Hematol. 98, 74–88 (2013).

    Article  PubMed  Google Scholar 

  36. Stalemark, H. et al. Incidence of Langerhans cell histiocytosis in children: a population-based study. Pediatr. Blood Cancer 51, 76–81 (2008).

    Article  PubMed  Google Scholar 

  37. Alston, R. D. et al. Incidence and survival of childhood Langerhans cell histiocytosis in Northwest England from 1954 to 1998. Pediatr. Blood Cancer 48, 555–560 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Makras, P., Stathi, D., Yavropoulou, M., Tsoli, M. & Kaltsas, G. The annual incidence of Langerhans cell histiocytosis among adults living in Greece. Pediatr. Blood Cancer 67, e28422 (2020).

    Article  PubMed  Google Scholar 

  39. Passone, C. G. B. et al. Growth hormone treatment in Prader-Willi syndrome patients: systematic review and meta-analysis. BMJ Paediatr. Open 4, e000630 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Whittington, J. E., Butler, J. V. & Holland, A. J. Changing rates of genetic subtypes of Prader-Willi syndrome in the UK. Eur. J. Hum. Genet. 15, 127–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Bar, C. et al. Early diagnosis and care is achieved but should be improved in infants with Prader-Willi syndrome. Orphanet J. Rare Dis. 12, 118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Smith, A. et al. Birth prevalence of Prader-Willi syndrome in Australia. Arch. Dis. Child. 88, 263–264 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vogels, A. et al. Minimum prevalence, birth incidence and cause of death for Prader-Willi syndrome in Flanders. Eur. J. Hum. Genet. 12, 238–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Lionti, T., Reid, S. M., White, S. M. & Rowell, M. M. A population-based profile of 160 Australians with Prader-Willi syndrome: trends in diagnosis, birth prevalence and birth characteristics. Am. J. Med. Genet. A 167A, 371–378 (2015).

    Article  PubMed  Google Scholar 

  45. Patel, L., McNally, R. J., Harrison, E., Lloyd, I. C. & Clayton, P. E. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J. Pediatr. 148, 85–88 (2006).

    Article  PubMed  Google Scholar 

  46. Khaper, T. et al. Increasing incidence of optic nerve hypoplasia/septo-optic dysplasia spectrum: Geographic clustering in Northern Canada. Paediatr. Child. Health 22, 445–453 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bedont, J. L., Newman, E. A. & Blackshaw, S. Patterning, specification, and differentiation in the developing hypothalamus. Wiley Interdiscip. Rev. Dev. Biol. 4, 445–468 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bereket, A. et al. Hypothalamic obesity in children. Obes. Rev. 13, 780–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Swaab, D. F. Neuropeptides in hypothalamic neuronal disorders. Int. Rev. Cytol. 240, 305–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Park, A. J. & Bloom, S. R. Neuroendocrine control of food intake. Curr. Opin. Gastroenterol. 21, 228–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Ferguson, A. V., Latchford, K. J. & Samson, W. K. The paraventricular nucleus of the hypothalamus–a potential target for integrative treatment of autonomic dysfunction. Expert Opin. Ther. Targets 12, 717–727 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, T. et al. Social control of hypothalamus-mediated male aggression. Neuron 95, 955–970 e954 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu, R. K. et al. An amygdala-to-hypothalamus circuit for social reward. Nat. Neurosci. 24, 831–842 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Boekhoff, S., Bogusz, A., Sterkenburg, A. S., Eveslage, M. & Muller, H. L. Long-term effects of growth hormone replacement therapy in childhood-onset craniopharyngioma: results of the German Craniopharyngioma Registry (HIT-Endo). Eur. J. Endocrinol. 179, 331–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Roth, C. L., Gebhardt, U. & Muller, H. L. Appetite-regulating hormone changes in patients with craniopharyngioma. Obesity 19, 36–42 (2011). An important paper on the appetite-regulating hormones.

    Article  CAS  PubMed  Google Scholar 

  56. McCormack, S. E., Blevins, J. E. & Lawson, E. A. Metabolic effects of oxytocin. Endocr. Rev. https://doi.org/10.1210/endrev/bnz012 (2020). A comprehensive review of oxytocin.

    Article  PubMed  Google Scholar 

  57. Plessow, F. et al. Effects of intranasal oxytocin on the blood oxygenation level-dependent signal in food motivation and cognitive control pathways in overweight and obese men. Neuropsychopharmacology 43, 638–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Plessow, F., Marengi, D. A., Perry, S. K. & Lawson, E. A. Oxytocin administration increases proactive control in men with overweight or obesity: a randomized, double-blind, placebo-controlled crossover study. Obesity 29, 56–61 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Bomer, I. et al. Comparison of energy expenditure, body composition, metabolic disorders, and energy intake between obese children with a history of craniopharyngioma and children with multifactorial obesity. J. Pediatr. Endocrinol. Metab. 28, 1305–1312 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Bekx, M. T., Carrel, A. L., Shriver, T. C., Li, Z. & Allen, D. B. Decreased energy expenditure is caused by abnormal body composition in infants with Prader-Willi syndrome. J. Pediatr. 143, 372–376 (2003).

    Article  PubMed  Google Scholar 

  61. Roth, C. L. et al. Reduced sympathetic metabolites in urine of obese patients with craniopharyngioma. Pediatr. Res. 61, 496–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Muller, H. L. Increased daytime sleepiness in patients with childhood craniopharyngioma and hypothalamic tumor involvement: review of the literature and perspectives. Int. J. Endocrinol. 2010, 519607 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Muller, H. L. et al. Melatonin treatment in obese patients with childhood craniopharyngioma and increased daytime sleepiness. Cancer Causes Control 17, 583–589 (2006).

    Article  PubMed  Google Scholar 

  64. Muller, H. L., Handwerker, G., Wollny, B., Faldum, A. & Sorensen, N. Melatonin secretion and increased daytime sleepiness in childhood craniopharyngioma patients. J. Clin. Endocrinol. Metab. 87, 3993–3996 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Berthoud, H. R. & Jeanrenaud, B. Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105, 146–151 (1979).

    Article  CAS  PubMed  Google Scholar 

  66. Thaler, J. P. & Schwartz, M. W. Minireview: Inflammation and obesity pathogenesis: the hypothalamus heats up. Endocrinology 151, 4109–4115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bhusal, A., Rahman, M. H. & Suk, K. Hypothalamic inflammation in metabolic disorders and aging. Cell. Mol. Life Sci. 79, 32 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Moller, M. Vasopressin and oxytocin beyond the pituitary in the human brain. Handb. Clin. Neurol. 180, 7–24 (2021).

    Article  PubMed  Google Scholar 

  69. Pascual, J. M. et al. Craniopharyngiomas primarily involving the hypothalamus: a model of neurosurgical lesions to elucidate the neurobiological basis of psychiatric disorders. World Neurosurg. 120, e1245–e1278 (2018).

    Article  PubMed  Google Scholar 

  70. Bauer, H. G. Endocrine and other clinical manifestations of hypothalamic disease; a survey of 60 cases, with autopsies. J. Clin. Endocrinol. Metab. 14, 13–31 (1954).

    Article  CAS  PubMed  Google Scholar 

  71. Zada, G., Kintz, N., Pulido, M. & Amezcua, L. Prevalence of neurobehavioral, social, and emotional dysfunction in patients treated for childhood craniopharyngioma: a systematic literature review. PLoS ONE 8, e76562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ozyurt, J., Muller, H. L. & Thiel, C. M. A systematic review of cognitive performance in patients with childhood craniopharyngioma. J. Neurooncol. 125, 9–21 (2015). A comprehensive review of the neuropsychological sequelae in childhood-onset craniopharyngioma.

    Article  PubMed  Google Scholar 

  73. Vann, S. D. Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia 48, 2316–2327 (2010).

    Article  PubMed  Google Scholar 

  74. Erfurth, E. M. Diagnosis, background, and treatment of hypothalamic damage in craniopharyngioma. Neuroendocrinology 110, 767–779 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Parkin, A. J. & Hunkin, N. M. Impaired temporal context memory on anterograde but not retrograde tests in the absence of frontal pathology. Cortex 29, 267–280 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Dekkers, O. M. et al. Quality of life in treated adult craniopharyngioma patients. Eur. J. Endocrinol. 154, 483–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Fournier-Goodnight, A. S. et al. Neurocognitive functioning in pediatric craniopharyngioma: performance before treatment with proton therapy. J. Neurooncol. 134, 97–105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Whittington, J. & Holland, A. Cognition in people with Prader-Willi syndrome: insights into genetic influences on cognitive and social development. Neurosci. Biobehav. Rev. 72, 153–167 (2017).

    Article  PubMed  Google Scholar 

  79. Ronson, A. Psychiatric disorders in oncology: recent therapeutic advances and new conceptual frameworks. Curr. Opin. Oncol. 16, 318–323 (2004).

    Article  PubMed  Google Scholar 

  80. Leibenluft, E. Pediatric irritability: a systems neuroscience approach. Trends Cogn. Sci. 21, 277–289 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wong, T. Y. et al. Neural networks of aggression: ALE meta-analyses on trait and elicited aggression. Brain Struct. Funct. 224, 133–148 (2019).

    Article  PubMed  Google Scholar 

  82. Ozyurt, J., Mehren, A., Boekhoff, S., Muller, H. L. & Thiel, C. M. Social cognition in patients with hypothalamic-pituitary tumors. Front. Oncol. 10, 1014 (2020). A study that demonstrates the effects of acquired hypothalamic damage on social cognition.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sternson, S. M. Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 77, 810–824 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Averbeck, B. B. & Murray, E. A. Hypothalamic interactions with large-scale neural circuits underlying reinforcement learning and motivated behavior. Trends Neurosci. 43, 681–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mehren, A. et al. Self- and informant-rated apathy in patients with childhood-onset craniopharyngioma. J. Neurooncol. 140, 27–35 (2018).

    Article  PubMed  Google Scholar 

  86. Le Heron, C., Apps, M. A. J. & Husain, M. The anatomy of apathy: a neurocognitive framework for amotivated behaviour. Neuropsychologia 118, 54–67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Neumann, I. D. & Landgraf, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci. 35, 649–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Kim, J. H. & Choi, J. H. Pathophysiology and clinical characteristics of hypothalamic obesity in children and adolescents. Ann. Pediatr. Endocrinol. Metab. 18, 161–167 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tena-Suck, M. L. et al. Intracerebral injection of oil cyst content of human craniopharyngioma (oil machinery fluid) as a toxic model in the rat brain. Acta Histochemica 116, 448–456 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Ghosh, M. et al. Effects of craniopharyngioma cyst fluid on neurons and glial cells cultured from rat brain hypothalamus. J. Chem. Neuroanat. 94, 93–101 (2018).

    Article  PubMed  Google Scholar 

  91. Romijn, J. A. The chronic syndromes after previous treatment of pituitary tumours. Nat. Rev. Endocrinol. 12, 547–556 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Goschzik, T. et al. Genomic alterations of adamantinomatous and papillary craniopharyngioma. J. Neuropathol. Exp. Neurol. 76, 126–134 (2017).

    CAS  PubMed  Google Scholar 

  93. Barry, S. & Korbonits, M. Update on the genetics of pituitary tumors. Endocrinol. Metab. Clin. North. Am. 49, 433–452 (2020).

    Article  PubMed  Google Scholar 

  94. Martinez-Barbera, J. P. & Buslei, R. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. J. Pediatr. Endocrinol. Metab. 28, 7–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Gaston-Massuet, C. et al. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc. Natl Acad. Sci. USA 108, 11482–11487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Martinez-Barbera, J. P. Molecular and cellular pathogenesis of adamantinomatous craniopharyngioma. Neuropathol. Appl. Neurobiol. 41, 721–732 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gonzalez-Meljem, J. M. et al. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat. Commun. 8, 1819 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gonzalez-Meljem, J. M. & Martinez-Barbera, J. P. Adamantinomatous craniopharyngioma as a model to understand paracrine and senescence-induced tumourigenesis. Cell. Mol. Life Sci. 78, 4521–4544 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Souza, C. T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Webb, E. A. & Dattani, M. T. Septo-optic dysplasia. Eur. J. Hum. Genet. 18, 393–397 (2010).

    Article  PubMed  Google Scholar 

  102. Bosch, I. A. L., Katugampola, H. & Dattani, M. T. Congenital hypopituitarism during the neonatal period: epidemiology, pathogenesis, therapeutic options, and outcome. Front. Pediatr. 8, 600962 (2020).

    Article  Google Scholar 

  103. Inoue, T., Nakamura, S. & Osumi, N. Fate mapping of the mouse prosencephalic neural plate. Dev. Biol. 219, 373–383 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Dattani, M. T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat. Genet. 19, 125–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Kelberman, D. et al. SOX2 plays a critical role in the pituitary, forebrain, and eye during human embryonic development. J. Clin. Endocrinol. Metab. 93, 1865–1873 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Jayakody, S. A. et al. SOX2 regulates the hypothalamic-pituitary axis at multiple levels. J. Clin. Invest. 122, 3635–3646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sarmah, S. et al. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci. Rep. 10, 3951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ahlgren, S. C., Thakur, V. & Bronner-Fraser, M. Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc. Natl Acad. Sci. USA 99, 10476–10481 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kahn, B. M. et al. Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia. Dis. Model. Mech. 10, 29–37 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Butler, M. G. & Duis, J. Chromosome 15 imprinting disorders: genetic laboratory methodology and approaches. Front. Pediatr. 8, 154 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cheon, C. K. Genetics of Prader-Willi syndrome and Prader-Will-Like syndrome. Ann. Pediatr. Endocrinol. Metab. 21, 126–135 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bieth, E. et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi syndrome. Eur. J. Hum. Genet. 23, 252–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Sahoo, T. et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet. 40, 719–721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Duker, A. L. et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur. J. Hum. Genet. 18, 1196–1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. de Smith, A. J. et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum. Mol. Genet. 18, 3257–3265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Polex-Wolf, J. et al. Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome. J. Clin. Invest. 128, 960–969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kim, Y. et al. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome. Nat. Med. 23, 213–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Bischof, J. M., Stewart, C. L. & Wevrick, R. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Hum. Mol. Genet. 16, 2713–2719 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Andrieu, D. et al. Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death. BMC Dev. Biol. 6, 56 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lukoshe, A. et al. Altered functional resting-state hypothalamic connectivity and abnormal pituitary morphology in children with Prader-Willi syndrome. J. Neurodev. Disord. 9, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bochukova, E. G. Transcriptomics of the Prader-Willi syndrome hypothalamus. Handb. Clin. Neurol. 181, 369–379 (2021).

    Article  PubMed  Google Scholar 

  122. Kummerfeld, D. M. et al. A comprehensive review of genetically engineered mouse models for Prader-Willi syndrome research. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22073613 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Correa-da-Silva, F., Fliers, E., Swaab, D. F. & Yi, C. X. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J. Neuroendocrinol. https://doi.org/10.1111/jne.12994 (2021). A very well-written overview of important hypothalamic neuropeptides and circuits involved in hypothalamic dysfunction in PWS.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bougneres, P., Pantalone, L., Linglart, A., Rothenbuhler, A. & Le Stunff, C. Endocrine manifestations of the rapid-onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, and neural tumor syndrome in childhood. J. Clin. Endocrinol. Metab. 93, 3971–3980 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Lazea, C., Sur, L. & Florea, M. ROHHAD (rapid-onset obesity with hypoventilation, hypothalamic dysfunction, autonomic dysregulation) syndrome – what every pediatrician should know about the etiopathogenesis, diagnosis and treatment: a review. Int. J. Gen. Med. 14, 319–326 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sanklecha, M., Sundaresan, S. & Udani, V. ROHHAD syndrome: the girl who forgets to breathe. Indian. Pediatr. 53, 343–344 (2016).

    Article  PubMed  Google Scholar 

  127. Giacomozzi, C. et al. Anti-hypothalamus and anti-pituitary auto-antibodies in ROHHAD syndrome: additional evidence supporting an autoimmune etiopathogenesis. Horm. Res. Paediatr. 92, 124–132 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Paz-Priel, I., Cooke, D. W. & Chen, A. R. Cyclophosphamide for rapid-onset obesity, hypothalamic dysfunction, hypoventilation, and autonomic dysregulation syndrome. J. Pediatrics 158, 337–339 (2011).

    Article  Google Scholar 

  129. Jacobson, L. A. et al. Improved behavior and neuropsychological function in children with ROHHAD after high-dose cyclophosphamide. Pediatrics https://doi.org/10.1542/peds.2015-1080 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. van Schaik, J. et al. The importance of specialized sleep investigations in children with a suprasellar tumor. Pituitary 23, 613–621 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gunay-Aygun, M., Schwartz, S., Heeger, S., O’Riordan, M. A. & Cassidy, S. B. The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics 108, E92 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Harvengt, J. et al. ROHHAD(NET) syndrome: systematic review of the clinical timeline and recommendations for diagnosis and prognosis. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgaa247 (2020).

    Article  PubMed  Google Scholar 

  133. Muller, H. L. et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur. J. Endocrinol. 165, 17–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Puget, S. et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J. Neurosurg. 106, 3–12 (2007).

    PubMed  Google Scholar 

  135. Elliott, R. E., Sands, S. A., Strom, R. G. & Wisoff, J. H. Craniopharyngioma clinical status scale: a standardized metric of preoperative function and posttreatment outcome. Neurosurg. Focus. 28, E2 (2010).

    Article  PubMed  Google Scholar 

  136. Perez, F. A. et al. MRI measures of hypothalamic injury are associated with glucagon-like peptide-1 receptor agonist treatment response in people with hypothalamic obesity. Diabetes Obes. Metab. 23, 1532–1541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Merchant, T. E. et al. Phase II trial of conformal radiation therapy for pediatric patients with craniopharyngioma and correlation of surgical factors and radiation dosimetry with change in cognitive function. J. Neurosurg. 104, 94–102 (2006).

    PubMed  Google Scholar 

  138. Warmuth-Metz, M. Imaging and Diagnosis in Pediatric Brain Tumor Studies 44–50 (Springer, 2017).

  139. Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    Article  PubMed  Google Scholar 

  140. Hoffmann, A., Brentrup, A. & Muller, H. L. First report on spinal metastasis in childhood-onset craniopharyngioma. J. Neurooncol. 129, 193–194 (2016).

    Article  PubMed  Google Scholar 

  141. Muller, H. L. et al. Xanthogranuloma, Rathke’s cyst, and childhood craniopharyngioma: results of prospective multinational studies of children and adolescents with rare sellar malformations. J. Clin. Endocrinol. Metab. 97, 3935–3943 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Hoffmann, A., Adelmann, S., Lohle, K., Claviez, A. & Muller, H. L. Pediatric prolactinoma: initial presentation, treatment, and long-term prognosis. Eur. J. Pediatrics 177, 125–132 (2018).

    Article  Google Scholar 

  143. Yamada, K., Matsuzawa, H., Uchiyama, M., Kwee, I. L. & Nakada, T. Brain developmental abnormalities in Prader-Willi syndrome detected by diffusion tensor imaging. Pediatrics 118, e442–e448 (2006).

    Article  PubMed  Google Scholar 

  144. Holsen, L. M. et al. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Obesity 14, 1028–1037 (2006).

    Article  PubMed  Google Scholar 

  145. Kang, J. et al. Predicting the location of the preoptic and anterior hypothalamic region by visualizing the thermoregulatory center on fMRI in craniopharyngioma using cold and warm stimuli. Aging 13, 10087–10098 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Muller, H. L. Management of hypothalamic obesity. Endocrinol. Metab. Clin. North Am. 49, 533–552 (2020).

    Article  PubMed  Google Scholar 

  147. Muller, H. L. et al. Prognosis and sequela in patients with childhood craniopharyngioma – results of HIT-ENDO and update on KRANIOPHARYNGEOM 2000. Klinische Padiat. 216, 343–348 (2004).

    Article  CAS  Google Scholar 

  148. Muller, H. L. et al. Obesity after childhood craniopharyngioma – German multicenter study on pre-operative risk factors and quality of life. Klinische Padiat. 213, 244–249 (2001).

    Article  CAS  Google Scholar 

  149. Hoffmann, A., Gebhardt, U., Sterkenburg, A. S., Warmuth-Metz, M. & Muller, H. L. Diencephalic syndrome in childhood craniopharyngioma – results of German multicenter studies on 485 long-term survivors of childhood craniopharyngioma. J. Clin. Endocrinol. Metab. 99, 3972–3977 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Gnekow, A. K. et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neurooncology 14, 1265–1284 (2012).

    CAS  Google Scholar 

  151. Yody, B. B. et al. Applied behavior management and acquired brain injury: approaches and assessment. J. Head. Trauma Rehabil. 15, 1041–1060 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Holmes, E. A. et al. The Lancet Psychiatry Commission on psychological treatments research in tomorrow’s science. Lancet Psychiatry 5, 237–286 (2018).

    Article  PubMed  Google Scholar 

  153. Hocking, M. C. et al. Social competence in pediatric brain tumor survivors: application of a model from social neuroscience and developmental psychology. Pediatr. Blood Cancer 62, 375–384 (2015).

    Article  PubMed  Google Scholar 

  154. Denzer, C. et al. Treatment of hypothalamic obesity with dextroamphetamine: a case series. Obes. Facts 12, 91–102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Elfers, C. T. & Roth, C. L. Effects of methylphenidate on weight gain and food intake in hypothalamic obesity. Front. Endocrinol. 2, 78 (2011).

    Article  Google Scholar 

  156. Dykens, E. M., Maxwell, M. A., Pantino, E., Kossler, R. & Roof, E. Assessment of hyperphagia in Prader-Willi syndrome. Obesity 15, 1816–1826 (2007).

    Article  PubMed  Google Scholar 

  157. Schwartz, L. et al. Behavioral features in Prader-Willi syndrome (PWS): consensus paper from the International PWS Clinical Trial Consortium. J. Neurodev. Disord. 13, 25 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Dykens, E. M. et al. Intranasal carbetocin reduces hyperphagia in individuals with Prader-Willi syndrome. JCI Insight https://doi.org/10.1172/jci.insight.98333 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lomenick, J. P., Buchowski, M. S. & Shoemaker, A. H. A 52-week pilot study of the effects of exenatide on body weight in patients with hypothalamic obesity. Obesity 24, 1222–1225 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Zoicas, F., Droste, M., Mayr, B., Buchfelder, M. & Schofl, C. GLP-1 analogues as a new treatment option for hypothalamic obesity in adults: report of nine cases. Eur. J. Endocrinol. 168, 699–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Simmons, J. H., Shoemaker, A. H. & Roth, C. L. Treatment with glucagon-like peptide-1 agonist exendin-4 in a patient with hypothalamic obesity secondary to intracranial tumor. Horm. Res. Paediatr. 78, 54–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Thondam, S. K. et al. A glucagon-like peptide-1 (GLP-1) receptor agonist in the treatment for hypothalamic obesity complicated by type 2 diabetes mellitus. Clin. Endocrinol. 77, 635–637 (2012).

    Article  CAS  Google Scholar 

  163. Castro-Dufourny, I., Carrasco, R. & Pascual, J. M. Hypothalamic obesity after craniopharyngioma surgery: treatment with a long acting glucagon like peptide 1 derivated. Endocrinol. Diabetes Nutr. 64, 182–184 (2017).

    Article  PubMed  Google Scholar 

  164. van Santen, S. S. et al. Bariatric surgery for hypothalamic obesity in craniopharyngioma patients: a retrospective, matched case-control study. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgab518 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Muller, H. L. Bariatric interventions in craniopharyngioma patients – best choice or last option for treatment of hypothalamic obesity? J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgab567 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Bretault, M. et al. Clinical review: Bariatric surgery following treatment for craniopharyngioma: a systematic review and individual-level data meta-analysis. J. Clin. Endocrinol. Metab. 98, 2239–2246 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Greer, S. M., Goldstein, A. N. & Walker, M. P. The impact of sleep deprivation on food desire in the human brain. Nat. Commun. 4, 2259 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Cajochen, C., Krauchi, K. & Wirz-Justice, A. Role of melatonin in the regulation of human circadian rhythms and sleep. J. Neuroendocrinol. 15, 432–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Muller, H. L. et al. Secondary narcolepsy may be a causative factor of increased daytime sleepiness in obese childhood craniopharyngioma patients. J. Pediatr. Endocrinol. Metab. 19 (Suppl. 1), 423–429 (2006).

    PubMed  Google Scholar 

  170. van Schaik, J. et al. Dextroamphetamine treatment for children with hypothalamic obesity. J. Endocr. Soc. 5, A62–A63 (2021).

    Article  PubMed Central  Google Scholar 

  171. Mason, P. W., Krawiecki, N. & Meacham, L. R. The use of dextroamphetamine to treat obesity and hyperphagia in children treated for craniopharyngioma. Arch. Pediatr. Adolesc. Med. 156, 887–892 (2002).

    Article  PubMed  Google Scholar 

  172. Ismail, D., O’Connell, M. A. & Zacharin, M. R. Dexamphetamine use for management of obesity and hypersomnolence following hypothalamic injury. J. Pediatr. Endocrinol. Metab. 19, 129–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Lawson, E. A., Olszewski, P. K., Weller, A. & Blevins, J. E. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis. J. Neuroendocrinol. 32, e12805 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Brauner, R. et al. Diazoxide in children with obesity after hypothalamic-pituitary lesions: a randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab. 101, 4825–4833 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Lustig, R. H. et al. Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 88, 2586–2592 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Lustig, R. H. et al. Hypothalamic obesity caused by cranial insult in children: altered glucose and insulin dynamics and reversal by a somatostatin agonist. J. Pediatr. 135, 162–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  177. Hamilton, J. K. et al. Hypothalamic obesity following craniopharyngioma surgery: results of a pilot trial of combined diazoxide and metformin therapy. Int. J. Pediatr. Endocrinol. 2011, 417949 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Roth, C. L. & Reinehr, T. Roles of gastrointestinal and adipose tissue peptides in childhood obesity and changes after weight loss due to lifestyle intervention. Arch. Pediatr. Adolesc. Med. 164, 131–138 (2010).

    Article  PubMed  Google Scholar 

  179. Roth, C. L. et al. A phase 3 randomized clinical trial using a once-weekly glucagon-like peptide-1 receptor agonist in adolescents and young adults with hypothalamic obesity. Diabetes Obes. Metab. 23, 363–373 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. van Schaik, J. et al. Experiences with glucagon-like peptide-1 receptor agonist in children with acquired hypothalamic obesity. Obes. Facts 13, 361–370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tiosano, D., Eisentein, I., Militianu, D., Chrousos, G. P. & Hochberg, Z. 11β-Hydroxysteroid dehydrogenase activity in hypothalamic obesity. J. Clin. Endocrinol. Metab. 88, 379–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Fleseriu, M. et al. Hormonal replacement in hypopituitarism in adults: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 3888–3921 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Daubenbuchel, A. M. et al. Eating behaviour and oxytocin in patients with childhood-onset craniopharyngioma and different grades of hypothalamic involvement. Pediatr. Obes. 14, e12527 (2019).

    Article  PubMed  Google Scholar 

  184. Daubenbuchel, A. M. et al. Oxytocin in survivors of childhood-onset craniopharyngioma. Endocrine 54, 524–531 (2016). The first report in patients with craniopharyngioma showing that oxytocin concentrations are decreased in the saliva of patients with anterior hypothalamic lesions.

    Article  CAS  PubMed  Google Scholar 

  185. Hoffmann, A. et al. First experiences with neuropsychological effects of oxytocin administration in childhood-onset craniopharyngioma. Endocrine 56, 175–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Gebert, D. et al. De-masking oxytocin-deficiency in craniopharyngioma and assessing its link with affective function. Psychoneuroendocrinology 88, 61–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Brandi, M. L., Gebert, D., Kopczak, A., Auer, M. K. & Schilbach, L. Oxytocin release deficit and social cognition in craniopharyngioma patients. J. Neuroendocrinol. 32, e12842 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Daughters, K., Manstead, A. S. R. & Rees, D. A. Hypopituitarism is associated with lower oxytocin concentrations and reduced empathic ability. Endocrine 57, 166–174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Aulinas, A. et al. Low plasma oxytocin levels and increased psychopathology in hypopituitary men with diabetes insipidus. J. Clin. Endocrinol. Metab. 104, 3181–3191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Swaab, D. F., Purba, J. S. & Hofman, M. A. Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: a study of five cases. J. Clin. Endocrinol. Metab. 80, 573–579 (1995).

    CAS  PubMed  Google Scholar 

  191. Elowe-Gruau, E. et al. Childhood craniopharyngioma: hypothalamus-sparing surgery decreases the risk of obesity. J. Clin. Endocrinol. Metab. 98, 2376–2382 (2013). A unique single-centre comparison of different treatment strategies (gross total resection versus hypothalamus-sparing surgery plus radiotherapy) showing that hypothalamus-sparing strategies are superior in terms of long-term obesity and QOL and comparable in terms of relapse and progression rates.

    Article  CAS  PubMed  Google Scholar 

  192. Mortini, P. et al. Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. Endocrine 51, 148–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Van Gompel, J. J., Nippoldt, T. B., Higgins, D. M. & Meyer, F. B. Magnetic resonance imaging-graded hypothalamic compression in surgically treated adult craniopharyngiomas determining postoperative obesity. Neurosurg. Focus. 28, E3 (2010).

    Article  PubMed  Google Scholar 

  194. Roth, C. L. et al. Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity 23, 1226–1233 (2015).

    Article  PubMed  Google Scholar 

  195. Fjalldal, S. et al. Detailed assessment of hypothalamic damage in craniopharyngioma patients with obesity. Int. J. Obes. 43, 533–544 (2019).

    Article  CAS  Google Scholar 

  196. Apra, C., Enachescu, C., Lapras, V., Raverot, G. & Jouanneau, E. Is gross total resection reasonable in adults with craniopharyngiomas with hypothalamic involvement? World Neurosurg. 129, e803–e811 (2019).

    Article  PubMed  Google Scholar 

  197. Lamiman, K. et al. A quantitative analysis of craniopharyngioma cyst expansion during and after radiation therapy and surgical implications. Neurosurg. Focus. 41, E15 (2016).

    Article  PubMed  Google Scholar 

  198. Yano, S., Hide, T. & Shinojima, N. Surgical outcomes of endoscopic endonasal skull base surgery of craniopharyngiomas evaluated according to the degree of hypothalamic extension. World Neurosurg. 100, 288–296 (2017).

    Article  PubMed  Google Scholar 

  199. Bogusz, A. et al. Posterior hypothalamus-sparing surgery improves outcome after childhood craniopharyngioma. Endocr. Connect. 8, 481–492 (2019). A prospective study that shows the benefit of posterior hypothalamus-sparing surgical strategies.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Beltran, C., Roca, M. & Merchant, T. E. On the benefits and risks of proton therapy in pediatric craniopharyngioma. Int. J. Radiat. Oncol. Biol. Phys. 82, e281–e287 (2012).

    Article  PubMed  Google Scholar 

  201. Prieto, R. et al. Craniopharyngioma adherence: a reappraisal of the evidence. Neurosurg. Rev. 43, 453–472 (2020).

    Article  PubMed  Google Scholar 

  202. Pascual, J. M. et al. The 2013 Sixto Obrador Award. A triple-axis topographical model for surgical planning of craniopharyngiomas. Part I: historical review of the topographical diagnosis and classification schemes of craniopharyngiomas [Spanish]. Neurocirugia 25, 154–169 (2014).

    Article  PubMed  Google Scholar 

  203. Pascual, J. M. et al. The 2013 Sixto Obrador Award. A triple-axis topographical model for surgical planning of craniopharyngiomas. Part II: anatomical and neuroradiological evidence to define triple-axis topography and its usefulness in predicting individual surgical risk [Spanish]. Neurocirugia 25, 211–239 (2014).

    Article  PubMed  Google Scholar 

  204. Neudorfer, C. et al. A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region. Sci. Data 7, 305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Marcus, H. J. et al. Craniopharyngioma in children: trends from a third consecutive single-center cohort study. J. Neurosurg. Pediatr. https://doi.org/10.3171/2019.10.PEDS19147 (2019).

    Article  PubMed  Google Scholar 

  206. Grewal, M. R. et al. Gross total versus subtotal surgical resection in the management of craniopharyngiomas. Allergy Rhinol. 11, 2152656720964158 (2020).

    Google Scholar 

  207. Madsen, P. J. et al. Endoscopic endonasal resection versus open surgery for pediatric craniopharyngioma: comparison of outcomes and complications. J. Neurosurg. Pediatr. https://doi.org/10.3171/2019.4.PEDS18612 (2019).

    Article  PubMed  Google Scholar 

  208. Kiehna, E. N. & Merchant, T. E. Radiation therapy for pediatric craniopharyngioma. Neurosurg. Focus. 28, E10 (2010).

    Article  PubMed  Google Scholar 

  209. Sands, S. A. et al. Quality of life and behavioral follow-up study of pediatric survivors of craniopharyngioma. J. Neurosurg. 103, 302–311 (2005).

    PubMed  Google Scholar 

  210. Mandrell, B. N. et al. Predictors of narcolepsy and hypersomnia due to medical disorder in pediatric craniopharyngioma. J. Neurooncol. 148, 307–316 (2020).

    Article  PubMed  Google Scholar 

  211. Eveslage, M. et al. The postoperative quality of life in children and adolescents with craniopharyngioma. Dtsch. Arztebl Int. 116, 321–328 (2019).

    PubMed  PubMed Central  Google Scholar 

  212. Bishop, A. J. et al. Proton beam therapy versus conformal photon radiation therapy for childhood craniopharyngioma: multi-institutional analysis of outcomes, cyst dynamics, and toxicity. Int. J. Radiat. Oncol. Biol. Phys. 90, 354–361 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Merchant, T. E. et al. Disease control after reduced volume conformal and intensity modulated radiation therapy for childhood craniopharyngioma. Int. J. Radiat. Oncol. Biol. Phys. 85, e187–e192 (2013).

    Article  PubMed  Google Scholar 

  214. Hess, C. B. et al. An update from the Pediatric Proton Consortium Registry. Front. Oncol. 8, 165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Jimenez, R. B. et al. Proton radiation therapy for pediatric craniopharyngioma. Int. J. Radiat. Oncol. Biol. Phys. https://doi.org/10.1016/j.ijrobp.2021.02.045 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Lo, A. C. et al. Long-term outcomes and complications in patients with craniopharyngioma: the British Columbia Cancer Agency experience. Int. J. Radiat. Oncol. Biol. Phys. 88, 1011–1018 (2014).

    Article  PubMed  Google Scholar 

  217. Edmonston, D. et al. Limited surgery and conformal photon radiation therapy for pediatric craniopharyngeoma: long-term results from the RT1 protocol. Int. J. Radiat. Oncol. 111 (Suppl. 3), 84 (2021).

    Article  Google Scholar 

  218. Young, M. et al. Radiotherapy alone for pediatric patients with craniopharyngioma. J. Neurooncol. 156, 195–204 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. Kayadjanian, N., Schwartz, L., Farrar, E., Comtois, K. A. & Strong, T. V. High levels of caregiver burden in Prader-Willi syndrome. PLoS ONE 13, e0194655 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Tauber, M. et al. The use of oxytocin to improve feeding and social skills in infants with Prader-Willi syndrome. Pediatrics https://doi.org/10.1542/peds.2016-2976 (2017).

    Article  PubMed  Google Scholar 

  221. Burnett, L. C. et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J. Clin. Invest. 27, 293–305 (2017).

    Google Scholar 

  222. Deal, C. L. et al. Growth Hormone Research Society workshop summary: consensus guidelines for recombinant human growth hormone therapy in Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 98, E1072–E1087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Feigerlova, E. et al. Elevated insulin-like growth factor-I values in children with Prader-Willi syndrome compared with growth hormone (GH) deficiency children over two years of GH treatment. J. Clin. Endocrinol. Metab. 95, 4600–4608 (2010).

    Article  CAS  PubMed  Google Scholar 

  224. Lindgren, A. C. et al. Growth hormone treatment of children with Prader-Willi syndrome affects linear growth and body composition favourably. Acta Paediatr. 87, 28–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  225. Grugni, G., Sartorio, A. & Crino, A. Growth hormone therapy for Prader-Willi syndrome: challenges and solutions. Ther. Clin. Risk Manag. 12, 873–881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Frixou, M. et al. The use of growth hormone therapy in adults with Prader-Willi syndrome: a systematic review. Clin. Endocrinol. 94, 645–655 (2021).

    Article  CAS  Google Scholar 

  227. Sanchez-Ortiga, R., Klibanski, A. & Tritos, N. A. Effects of recombinant human growth hormone therapy in adults with Prader-Willi syndrome: a meta-analysis. Clin. Endocrinol. 77, 86–93 (2012).

    Article  CAS  Google Scholar 

  228. Coupaye, M. et al. Growth hormone therapy for children and adolescents with Prader-Willi syndrome is associated with improved body composition and metabolic status in adulthood. J. Clin. Endocrinol. Metab. 98, E328–E335 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Tauber, M., Diene, G. & Molinas, C. Sequelae of GH treatment in children with PWS. Pediatr. Endocrinol. Rev. 14, 138–146 (2016).

    PubMed  Google Scholar 

  230. Hoybye, C., Holland, A. J. & Driscoll, D. J., Clinical and Scientific Advisory Board of The International Prader-Willi Syndrome Organisation. Time for a general approval of growth hormone treatment in adults with Prader-Willi syndrome. Orphanet J. Rare Dis. 16, 69 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Noordam, C., Hoybye, C. & Eiholzer, U. Prader-Willi syndrome and hypogonadism: a review article. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22052705 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Pellikaan, K. et al. Hypogonadism in women with Prader-Willi syndrome – clinical recommendations based on a Dutch cohort study, review of the literature and an international expert panel discussion. J. Clin. Med. https://doi.org/10.3390/jcm10245781 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Pellikaan, K. et al. Thyroid function in adults with Prader-Willi syndrome; a cohort study and literature review. J. Clin. Med. https://doi.org/10.3390/jcm10173804 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Tauber, M. et al. Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: a randomised placebo-controlled trial in 24 patients. Orphanet J. Rare Dis. 6, 47 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Miller, J. L. et al. Oxytocin treatment in children with Prader-Willi syndrome: a double-blind, placebo-controlled, crossover study. Am. J. Med. Genet. A 173, 1243–1250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kuppens, R. J., Donze, S. H. & Hokken-Koelega, A. C. Promising effects of oxytocin on social and food-related behaviour in young children with Prader-Willi syndrome: a randomized, double-blind, controlled crossover trial. Clin. Endocrinol. 85, 979–987 (2016).

    Article  CAS  Google Scholar 

  237. Einfeld, S. L. et al. A double-blind randomized controlled trial of oxytocin nasal spray in Prader Willi syndrome. Am. J. Med. Genet. A 164A, 2232–2239 (2014).

    Article  CAS  PubMed  Google Scholar 

  238. Hollander, E. et al. Intranasal oxytocin versus placebo for hyperphagia and repetitive behaviors in children with Prader-Willi syndrome: a randomized controlled pilot trial. J. Psychiatr. Res. 137, 643–651 (2021).

    Article  PubMed  Google Scholar 

  239. Damen, L. et al. Oxytocin in young children with Prader-Willi syndrome: results of a randomized, double-blind, placebo-controlled, crossover trial investigating 3 months of oxytocin. Clin. Endocrinol. 94, 774–785 (2021). One of the few randomized controlled trials that have been performed on interventions for hypothalamic obesity.

    Article  CAS  Google Scholar 

  240. De Waele, K. et al. Long-acting octreotide treatment causes a sustained decrease in ghrelin concentrations but does not affect weight, behaviour and appetite in subjects with Prader-Willi syndrome. Eur. J. Endocrinol. 159, 381–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  241. Kimonis, V., Surampalli, A., Wencel, M., Gold, J. A. & Cowen, N. M. A randomized pilot efficacy and safety trial of diazoxide choline controlled-release in patients with Prader-Willi syndrome. PLoS ONE 14, e0221615 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. McCandless, S. E. et al. Effects of MetAP2 inhibition on hyperphagia and body weight in Prader-Willi syndrome: a randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 19, 1751–1761 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Tauber, M. et al. Prader-Willi syndrome: a model for understanding the ghrelin system. J. Neuroendocrinol. 31, e12728 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Allas, S. et al. AZP-531, an unacylated ghrelin analog, improves food-related behavior in patients with Prader-Willi syndrome: a randomized placebo-controlled trial. PLoS ONE 13, e0190849 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Consoli, A. et al. Effect of topiramate on eating behaviours in Prader-Willi syndrome: TOPRADER double-blind randomised placebo-controlled study. Transl. Psychiatry 9, 274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Scheimann, A. O., Butler, M. G., Gourash, L., Cuffari, C. & Klish, W. Critical analysis of bariatric procedures in Prader-Willi syndrome. J. Pediatr. Gastroenterol. Nutr. 46, 80–83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Alqahtani, A. R., Elahmedi, M. O., Al Qahtani, A. R., Lee, J. & Butler, M. G. Laparoscopic sleeve gastrectomy in children and adolescents with Prader-Willi syndrome: a matched-control study. Surg. Obes. Relat. Dis. 12, 100–110 (2016).

    Article  PubMed  Google Scholar 

  248. Liu, S. Y., Wong, S. K., Lam, C. C. & Ng, E. K. Bariatric surgery for Prader-Willi syndrome was ineffective in producing sustainable weight loss: long term results for up to 10 years. Pediatr. Obes. 15, e12575 (2020).

    Article  PubMed  Google Scholar 

  249. Poretti, A., Grotzer, M. A., Ribi, K., Schonle, E. & Boltshauser, E. Outcome of craniopharyngioma in children: long-term complications and quality of life. Dev. Med. Child. Neurol. 46, 220–229 (2004).

    Article  PubMed  Google Scholar 

  250. Pedreira, C. C. et al. Health related quality of life and psychological outcome in patients treated for craniopharyngioma in childhood. J. Pediatr. Endocrinol. Metab. 19, 15–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  251. Muller, H. L. et al. Functional capacity, obesity and hypothalamic involvement: cross-sectional study on 212 patients with childhood craniopharyngioma. Klinische Padiatr. 215, 310–314 (2003).

    Article  CAS  Google Scholar 

  252. Muller, H. L. et al. Functional capacity and body mass index in patients with sellar masses – cross-sectional study on 403 patients diagnosed during childhood and adolescence. Childs Nerv. Syst. 21, 539–545 (2005).

    Article  PubMed  Google Scholar 

  253. Muller, H. L. et al. Longitudinal study on quality of life in 102 survivors of childhood craniopharyngioma. Childs Nerv. Syst. 21, 975–980 (2005).

    Article  PubMed  Google Scholar 

  254. Muller, H. L. Paediatrics: surgical strategy and quality of life in craniopharyngioma. Nat. Rev. Endocrinol. 9, 447–449 (2013).

    Article  PubMed  Google Scholar 

  255. Gillani, M., Hassan, S., Abdullah, U. H., Saeed Baqai, M. W. & Shamim, M. S. Quality of life in children treated for craniopharyngiomas. J. Pak. Med. Assoc. 70, 2072–2074 (2020).

    PubMed  Google Scholar 

  256. Sterkenburg, A. S. et al. Childhood craniopharyngioma with hypothalamic obesity – no long-term weight reduction due to rehabilitation programs. Klinische Padiatr. 226, 344–350 (2014).

    Article  CAS  Google Scholar 

  257. Wilson, K. S., Wiersma, L. D. & Rubin, D. A. Quality of life in children with Prader Willi syndrome: parent and child reports. Res. Dev. Disabil. 57, 149–157 (2016).

    Article  PubMed  Google Scholar 

  258. Mazaheri, M. M. et al. The impact of Prader-Willi syndrome on the family’s quality of life and caregiving, and the unaffected siblings’ psychosocial adjustment. J. Intellect. Disabil. Res. 57, 861–873 (2013).

    Article  CAS  PubMed  Google Scholar 

  259. Meade, C. et al. Prader-Willi syndrome in children: quality of life and caregiver burden. Acta Paediatr. 110, 1665–1670 (2021).

    Article  PubMed  Google Scholar 

  260. van Nieuwpoort, I. C., Deijen, J. B., Curfs, L. M. & Drent, M. L. The relationship between IGF-I concentration, cognitive function and quality of life in adults with Prader-Willi syndrome. Hormones Behav. 59, 444–450 (2011).

    Article  CAS  Google Scholar 

  261. Apps, J. R. et al. Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathol. 135, 757–777 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Petralia, F. et al. Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell 183, 1962–1985.e31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Patel, K. et al. Radiologic response to MEK inhibition in a patient with a WNT-activated craniopharyngioma. Pediatr. Blood Cancer 68, e28753 (2021).

    PubMed  Google Scholar 

  264. Andoniadou, C. L. et al. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol. 124, 259–271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Donson, A. M. et al. Molecular analyses reveal inflammatory mediators in the solid component and cyst fluid of human adamantinomatous craniopharyngioma. J. Neuropathol. Exp. Neurol. 76, 779–788 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Grob, S. et al. Targeting IL-6 is a potential treatment for primary cystic craniopharyngioma. Front. Oncol. 9, 791 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Aylwin, S. J., Bodi, I. & Beaney, R. Pronounced response of papillary craniopharyngioma to treatment with vemurafenib, a BRAF inhibitor. Pituitary 19, 544–546 (2016).

    Article  PubMed  Google Scholar 

  268. Liu, X. et al. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology 156, 2461–2469 (2015).

    Article  CAS  PubMed  Google Scholar 

  269. Huynh, K. D. et al. Weight loss, improved body composition and fat distribution by tesomet in acquired hypothalamic obesity. J. Endocr. Soc. 5, A64–A65 (2021).

    Article  PubMed Central  Google Scholar 

  270. Harat, M., Rudas, M., Zielinski, P., Birska, J. & Sokal, P. Nucleus accumbens stimulation in pathological obesity. Neurol. Neurochir. Pol. 50, 207–210 (2016).

    Article  PubMed  Google Scholar 

  271. Franco, R. R. et al. Assessment of safety and outcome of lateral hypothalamic deep brain stimulation for obesity in a small series of patients with Prader-Willi syndrome. JAMA Netw. Open. 1, e185275 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Talakoub, O. et al. Lateral hypothalamic activity indicates hunger and satiety states in humans. Ann. Clin. Transl. Neurol. 4, 897–901 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Muller, H. L. et al. Low concordance between surgical and radiological assessment of degree of resection and treatment-related hypothalamic damage: results of KRANIOPHARYNGEOM 2007. Pituitary 21, 371–378 (2018).

    Article  PubMed  Google Scholar 

  274. Sorva, R. & Heiskanen, O. Craniopharyngioma in Finland. A study of 123 cases. Acta Neurochir. 81, 85–89 (1986).

    Article  CAS  PubMed  Google Scholar 

  275. Olsson, D. S., Andersson, E., Bryngelsson, I. L., Nilsson, A. G. & Johannsson, G. Excess mortality and morbidity in patients with craniopharyngioma, especially in patients with childhood onset: a population-based study in Sweden. J. Clin. Endocrinol. Metab. 100, 467–474 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Nielsen, E. H. et al. Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J. Neurooncol. 104, 755–763 (2011).

    Article  CAS  PubMed  Google Scholar 

  277. Momin, A. A. et al. Descriptive epidemiology of craniopharyngiomas in the United States. Pituitary https://doi.org/10.1007/s11102-021-01127-6 (2021).

    Article  PubMed  Google Scholar 

  278. Schoenberg, B. S., Schoenberg, D. G., Christine, B. W. & Gomez, M. R. The epidemiology of primary intracranial neoplasms of childhood. A population study. Mayo Clin. Proc. 51, 51–56 (1976).

    CAS  PubMed  Google Scholar 

  279. Dolecek, T. A., Propp, J. M., Stroup, N. E. & Kruchko, C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neurooncology 14 (Suppl 5), v1–v49 (2012).

    Google Scholar 

  280. McCarthy, B. J. et al. Primary CNS germ cell tumors in Japan and the United States: an analysis of 4 tumor registries. Neurooncology 14, 1194–1200 (2012).

    Google Scholar 

  281. Kuratsu, J. & Ushio, Y. Epidemiological study of primary intracranial tumors: a regional survey in Kumamoto Prefecture in the southern part of Japan. J. Neurosurg. 84, 946–950 (1996).

    Article  CAS  PubMed  Google Scholar 

  282. Ostrom, Q. T. et al. Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neurooncology 16 (Suppl 10), x1–x36 (2015).

    Google Scholar 

  283. Thylefors, B., Negrel, A. D. & Pararajasegaram, R. Epidemiologic aspects of global blindness prevention. Curr. Opin. Ophthalmol. 3, 824–834 (1992).

    Article  CAS  PubMed  Google Scholar 

  284. McCabe, M. J., Alatzoglou, K. S. & Dattani, M. T. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best. Pract. Res. Clin. Endocrinol. Metab. 25, 115–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  285. Cassidy, S. B., Schwartz, S., Miller, J. L. & Driscoll, D. J. Prader-Willi syndrome. Genet. Med. 14, 10–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  286. Smith, A. & Hung, D. The dilemma of diagnostic testing for Prader-Willi syndrome. Transl. Pediatr. 6, 46–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Greenway, F. L. & Bray, G. A. Treatment of hypothalamic obesity with caffeine and ephedrine. Endocr. Pract. 14, 697–703 (2008).

    Article  PubMed  Google Scholar 

  288. Sadatomo, T., Sakoda, K., Yamanaka, M., Kutsuna, M. & Kurisu, K. Mazindol administration improved hyperphagia after surgery for craniopharyngioma – case report. Neurol. Med. Chir. 41, 210–212 (2001).

    Article  CAS  Google Scholar 

  289. Miller, J. L., Linville, T. D. & Dykens, E. M. Effects of metformin in children and adolescents with Prader-Willi syndrome and early-onset morbid obesity: a pilot study. J. Pediatr. Endocrinol. Metab. 27, 23–29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Kalina, M. A. et al. Carbohydrate-lipid profile and use of metformin with micronized fenofibrate in reducing metabolic consequences of craniopharyngioma treatment in children: single institution experience. J. Pediatr. Endocrinol. Metab. 28, 45–51 (2015).

    CAS  PubMed  Google Scholar 

  291. Shoemaker, A. H. et al. Energy balance in hypothalamic obesity in response to treatment with a once-weekly GLP-1 receptor agonist. Int. J. Obes. https://doi.org/10.1038/s41366-021-01043-6 (2022).

    Article  Google Scholar 

  292. Salehi, P. et al. Effects of exenatide on weight and appetite in overweight adolescents and young adults with Prader-Willi syndrome. Pediatr. Obes. 12, 221–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  293. Hsu, E. A., Miller, J. L., Perez, F. A. & Roth, C. L. Oxytocin and naltrexone successfully treat hypothalamic obesity in a boy post-craniopharyngioma resection. J. Clin. Endocrinol. Metab. 103, 370–375 (2018).

    Article  PubMed  Google Scholar 

  294. Geffner, M. et al. Changes in height, weight, and body mass index in children with craniopharyngioma after three years of growth hormone therapy: analysis of KIGS (Pfizer International Growth Database). J. Clin. Endocrinol. Metab. 89, 5435–5440 (2004).

    Article  CAS  PubMed  Google Scholar 

  295. Yuen, K. C. et al. Clinical characteristics and effects of GH replacement therapy in adults with childhood-onset craniopharyngioma compared with those in adults with other causes of childhood-onset hypothalamic-pituitary dysfunction. Eur. J. Endocrinol. 169, 511–519 (2013).

    Article  CAS  PubMed  Google Scholar 

  296. Heinks, K. et al. Quality of life and growth after childhood craniopharyngioma: results of the multinational trial KRANIOPHARYNGEOM 2007. Endocrine 59, 364–372 (2018).

    Article  CAS  PubMed  Google Scholar 

  297. Wijnen, M. et al. Excess morbidity and mortality in patients with craniopharyngioma: a hospital-based retrospective cohort study. Eur. J. Endocrinol. 178, 93–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  298. Hoffmann, A. et al. Nonalcoholic fatty liver disease and fatigue in long-term survivors of childhood-onset craniopharyngioma. Eur. J. Endocrinol. 173, 389–397 (2015).

    Article  CAS  PubMed  Google Scholar 

  299. Guran, T. et al. The role of leptin, soluble leptin receptor, resistin, and insulin secretory dynamics in the pathogenesis of hypothalamic obesity in children. Eur. J. Pediatr. 168, 1043–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  300. van Santen, S. S. et al. Diagnosing metabolic syndrome in craniopharyngioma patients: body composition versus BMI. Eur. J. Endocrinol. 181, 173–183 (2019).

    Article  PubMed  Google Scholar 

  301. Boekhoff, S. et al. Cerebral infarction in childhood-onset craniopharyngioma patients: results of KRANIOPHARYNGEOM 2007. Front. Oncol. https://doi.org/10.3389/fonc.2021.698150 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Burman, P. et al. Deaths among adult patients with hypopituitarism: hypocortisolism during acute stress, and de novo malignant brain tumors contribute to an increased mortality. J. Clin. Endocrinol. Metab. 98, 1466–1475 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.L.M. (DKS2014.13) and B.B. (DKS2018.02) are supported by the German Childhood Cancer Foundation, Bonn, Germany. M.T. has received a research grant from Pfizer. E.A.L. received an investigator initiated grant from Tonix Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (H.L.M. and H.M.v.S.); Epidemiology (H.L.M.); Mechanisms/pathophysiology (E.A.L. and J.-P.M.-B.); Diagnosis, screening and prevention (H.L.M., M.T., E.A.L. and B.B.); Management (H.L.M., M.T., E.A.L., J.Ö., S.P., T.E.M. and H.M.v.S.); Quality of life (H.L.M., M.T., E.A.L., J.Ö. and H.M.v.S.); Outlook (H.L.M. and H.M.v.S.): Overview of Primer (H.L.M.).

Corresponding author

Correspondence to Hermann L. Müller.

Ethics declarations

Competing interests

This manuscript was composed in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. H.L.M. has received reimbursement of participation fees for scientific meetings and continuing medical education events from Ferring, Lilly, Pfizer, Sandoz/Hexal, Novo Nordisk, Ipsen and Merck Serono, and has received reimbursement of travel expenses from Ipsen and lecture honoraria from Pfizer. M.T. has received reimbursement of participation fees for scientific meetings and continuing medical education events as well as lecture honoraria from Millendo, Pfizer, Novo Nordisk and Merck Serono. M.T. is on the scientific advisory board of OT4B, a pharmaceutical company developing oxytocin treatment in patients with PWS. E.A.L. is on the scientific advisory board and has a financial interest in OXT Therapeutics, a company developing oxytocin-based therapeutics for obesity and metabolic disease. E.A.L.’s interests were reviewed and are managed by MGH and Mass General Brigham (formerly known as Partners Healthcare) in accordance with their conflict of interest policies. J.Ö., B.B., J.-P.M.-B., S.P., T.E.M. and H.M.v.S declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks G. Chrousos, S. McCormack, S. Rose and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, H.L., Tauber, M., Lawson, E.A. et al. Hypothalamic syndrome. Nat Rev Dis Primers 8, 24 (2022). https://doi.org/10.1038/s41572-022-00351-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00351-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer