Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Bone stress injuries

Subjects

Abstract

Bone stress injuries, including stress fractures, are overuse injuries that lead to substantial morbidity in active individuals. These injuries occur when excessive repetitive loads are introduced to a generally normal skeleton. Although the precise mechanisms for bone stress injuries are not completely understood, the prevailing theory is that an imbalance in bone metabolism favours microdamage accumulation over its removal and replacement with new bone via targeted remodelling. Diagnosis is achieved by a combination of patient history and physical examination, with imaging used for confirmation. Management of bone stress injuries is guided by their location and consequent risk of healing complications. Bone stress injuries at low-risk sites typically heal with activity modification followed by progressive loading and return to activity. Additional treatment approaches include non-weight-bearing immobilization, medications or surgery, but these approaches are usually limited to managing bone stress injuries that occur at high-risk sites. A comprehensive strategy that integrates anatomical, biomechanical and biological risk factors has the potential to improve the understanding of these injuries and aid in their prevention and management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incidence of bone stress injuries in different college sports.
Fig. 2: Common anatomical sites for bone stress injuries.
Fig. 3: Hierarchy of bone structural organization.
Fig. 4: Pathogenesis of bone stress injuries.
Fig. 5: Molecular aspects of bone stress injury pathophysiology.
Fig. 6: Imaging modalities for exemplary bone stress injuries.
Fig. 7: Overview of commonly used MRI-based classification systems for bone stress injuries.
Fig. 8: Protocol for return to running after a bone stress injury.

Similar content being viewed by others

References

  1. Breithaupt, J. Zur Pathologie des menschlichen Fußes. Med. Ztg. 24, 169–177 (1855).

    Google Scholar 

  2. Stechow, S. Fußödem und Röntgenstrahlen. Dtsch. mil. ärztl. Z. 26, 465 (1897).

    Google Scholar 

  3. Burr, D. B. et al. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone Miner. Res. 12, 6–15 (1997).

    CAS  PubMed  Google Scholar 

  4. Lee, D. Stress fractures, active component, U.S. Armed Forces, 2004–2010. MSMR 18, 8–11 (2011).

    PubMed  Google Scholar 

  5. Waterman, B. R., Gun, B., Bader, J. O., Orr, J. D. & Belmont, P. J. Jr Epidemiology of lower extremity stress fractures in the United States military. Mil. Med. 181, 1308–1313 (2016).

    PubMed  Google Scholar 

  6. Bulathsinhala, L. et al. Risk of stress fracture varies by race/ethnic origin in a cohort study of 1.3 million US Army soldiers. J. Bone Miner. Res. 32, 1546–1553 (2017).

    CAS  PubMed  Google Scholar 

  7. Kardouni, J. R., McKinnon, C. J., Taylor, K. M. & Hughes, J. M. Timing of stress fracture in soldiers during the first 6 career months: a retrospective cohort study. J. Athl. Train. 56, 1278–1284 (2021).

    Google Scholar 

  8. Wentz, L., Liu, P. Y., Haymes, E. & Ilich, J. Z. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil. Med. 176, 420–430 (2011).

    PubMed  Google Scholar 

  9. Shaffer, R. A., Rauh, M. J., Brodine, S. K., Trone, D. W. & Macera, C. A. Predictors of stress fracture susceptibility in young female recruits. Am. J. Sports Med. 34, 108–115 (2006).

    PubMed  Google Scholar 

  10. Tenforde, A. S., Sayres, L. C., McCurdy, M. L., Sainani, K. L. & Fredericson, M. Identifying sex-specific risk factors for stress fractures in adolescent runners. Med. Sci. Sports Exerc. 45, 1843–1851 (2013).

    CAS  PubMed  Google Scholar 

  11. Changstrom, B. G., Brou, L., Khodaee, M., Braund, C. & Comstock, R. D. Epidemiology of stress fracture injuries among US high school athletes, 2005-2006 through 2012-2013. Am. J. Sports Med. 43, 26–33 (2015).

    PubMed  Google Scholar 

  12. Rizzone, K. H., Ackerman, K. E., Roos, K. G., Dompier, T. P. & Kerr, Z. Y. The epidemiology of stress fractures in collegiate student-athletes, 2004-2005 through 2013-2014 academic years. J. Athl. Train. 52, 966–975 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Patel, N. M. et al. Is the incidence of paediatric stress fractures on the rise? Trends in New York State from 2000 to 2015. J. Pediatr. Orthop. B 29, 499–504 (2020).

    PubMed  Google Scholar 

  14. Kliethermes, S. A. et al. Defining a research agenda for youth sport specialisation in the USA: the AMSSM youth early sport specialization summit. Br. J. Sports Med. 55, 135–143 (2021).

    PubMed  Google Scholar 

  15. Warden, S. J., Edwards, W. B. & Willy, R. W. Preventing bone stress injuries in runners with optimal workload. Curr. Osteoporos. Rep. 19, 298–307 (2021).

    PubMed  Google Scholar 

  16. Kountouris, A. et al. MRI bone marrow oedema precedes lumbar bone stress injury diagnosis in junior elite cricket fast bowlers. Br. J. Sports Med. 53, 1236–1239 (2019).

    PubMed  Google Scholar 

  17. Warden, S. J., Gutschlag, F. R., Wajswelner, H. & Crossley, K. M. Aetiology of rib stress fractures in rowers. Sports Med. 32, 819–836 (2002).

    PubMed  Google Scholar 

  18. Branch, T., Partin, C., Chamberland, P., Emeterio, E. & Sabetelle, M. Spontaneous fractures of the humerus during pitching. A series of 12 cases. Am. J. Sports Med. 20, 468–470 (1992).

    CAS  PubMed  Google Scholar 

  19. Warden, S. J. et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc. Natl Acad. Sci. USA 111, 5337–5342 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Caine, D., Meyers, R., Nguyen, J., Schöffl, V. & Maffulli, N. Primary periphyseal stress injuries in young athletes: a systematic review. Sports Med. 52, 741–772 (2021).

    PubMed  Google Scholar 

  21. Tenforde, A. S. et al. Prevalence and anatomical distribution of bone stress injuries in the elite para athlete. Am. J. Phys. Med. Rehabil. 98, 1036–1040 (2019).

    PubMed  Google Scholar 

  22. Weigl, K. & Amrami, B. Occupational stress fracture in an unusual location: report of a case in the distal end of the shaft of the radius. Clin. Orthop. Relat. Res. 147, 222–224 (1980).

    Google Scholar 

  23. Dellestable, F. & Gaucher, A. Clay-shoveler’s fracture. Stress fracture of the lower cervical and upper thoracic spinous processes. Rev. Rhum. Engl. Ed. 65, 575–582 (1998).

    CAS  PubMed  Google Scholar 

  24. Peebles, C. R., Sulkin, T. & Sampson, M. A. ‘Cable-maker’s clavicle’: stress fracture of the medial clavicle. Skelet. Radiol. 29, 421–423 (2000).

    CAS  Google Scholar 

  25. Howard, R. S. & Conrad, G. R. Ice cream scooper’s hand. Report of an occupationally related stress fracture of the hand. Clin. Nucl. Med. 17, 721–723 (1992).

    PubMed  Google Scholar 

  26. Wu, Y. F., Lu, K., Girgis, C., Preda, M. & Preda, V. Postpartum bilateral sacral stress fracture without osteoporosis—a case report and literature review. Osteoporos. Int. 32, 623–631 (2021).

    CAS  PubMed  Google Scholar 

  27. Scott, R. D., Turoff, N. & Ewald, F. C. Stress fracture of the patella following duopatellar total knee arthroplasty with patellar resurfacing. Clin. Orthop. Relat. Res. 170, 147–151 (1982).

    Google Scholar 

  28. Venkatanarasimha, N., Kamath, S., Kambouroglou, G. & Ostlere, S. Proximal ulna stress fracture and stress reaction of the proximal radius associated with the use of crutches: a case report and literature review. J. Orthop. Traumatol. 10, 155–157 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Oren, V., Kozenitzky, I., Babiacki, A. & Stern, A. Unusual cough related stress injuries. Eur. J. Nucl. Med. 14, 108–111 (1988).

    CAS  PubMed  Google Scholar 

  30. Hollander, K. et al. Sex-specific differences in running injuries: a systematic review with meta-analysis and meta-regression. Sports Med. 51, 1011–1039 (2021).

    PubMed  PubMed Central  Google Scholar 

  31. Wright, A. A., Taylor, J. B., Ford, K. R., Siska, L. & Smoliga, J. M. Risk factors associated with lower extremity stress fractures in runners: a systematic review with meta-analysis. Br. J. Sports Med. 49, 1517–1523 (2015).

    PubMed  Google Scholar 

  32. Rauh, M. J., Barrack, M. & Nichols, J. F. Associations between the female athlete triad and injury among high school runners. Int. J. Sports Phys. Ther. 9, 948–958 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Tenforde, A. S. et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am. J. Sports Med. 45, 302–310 (2017).

    PubMed  Google Scholar 

  34. Kraus, E. et al. Bone stress injuries in male distance runners: higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. Br. J. Sports Med. 53, 237–242 (2019).

    PubMed  Google Scholar 

  35. Nieves, J. W. et al. Males have larger skeletal size and bone mass than females, despite comparable body size. J. Bone Miner. Res. 20, 529–535 (2005).

    PubMed  Google Scholar 

  36. Tommasini, S. M., Nasser, P. & Jepsen, K. J. Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties. Bone 40, 498–505 (2007).

    PubMed  Google Scholar 

  37. Hill, P. F., Chatterji, S., Chambers, D. & Keeling, J. D. Stress fracture of the pubic ramus in female recruits. J. Bone Jt. Surg. Br. 78, 383–386 (1996).

    CAS  Google Scholar 

  38. Kelly, E. W., Jonson, S. R., Cohen, M. E. & Shaffer, R. Stress fractures of the pelvis in female Navy recruits: an analysis of possible mechanisms of injury. Mil. Med. 165, 142–146 (2000).

    CAS  PubMed  Google Scholar 

  39. Wang, H., Kia, M. & Dickin, D. C. Influences of load carriage and physical activity history on tibia bone strain. J. Sport. Health Sci. 8, 478–485 (2019).

    PubMed  Google Scholar 

  40. Xu, C., Silder, A., Zhang, J., Reifman, J. & Unnikrishnan, G. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women. BMC Musculoskelet. Disord. 18, 1–12 (2017).

    CAS  Google Scholar 

  41. Knapik, J. et al. Stress fracture risk factors in basic combat training. Int. J. Sports Med. 33, 940–946 (2012).

    CAS  PubMed  Google Scholar 

  42. Popp, K. L. et al. Bone mass, microarchitecture and strength are influenced by race/ethnicity in young adult men and women. Bone 103, 200–208 (2017).

    PubMed  Google Scholar 

  43. Warden, S. J. et al. Racial differences in cortical bone and their relationship to biochemical variables in Black and White children in the early stages of puberty. Osteoporos. Int. 24, 1869–1879 (2013).

    CAS  PubMed  Google Scholar 

  44. Seref-Ferlengez, Z., Kennedy, O. D. & Schaffler, M. B. Bone microdamage, remodeling and bone fragility: how much damage is too much damage? Bonekey Rep. 4, 644–644 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Giraud-Guille, M.-M. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif. Tissue Int. 42, 167–180 (1988).

    CAS  PubMed  Google Scholar 

  46. Skedros, J. G., Mason, M. W., Nelson, M. C. & Bloebaum, R. D. Evidence of structural and material adaptation to specific strain features in cortical bone. Anat. Rec. 246, 47–63 (1996).

    CAS  PubMed  Google Scholar 

  47. Wolff, J. Das Gesetz der Transformation der Knochen (Hirschwald, 1892).

  48. Burr, D. B. Bone quality: understanding what matters. J. Musculoskelet. Neuronal Interact. 4, 184–186 (2004).

    CAS  PubMed  Google Scholar 

  49. Pattin, C. A., Caler, W. E. & Carter, D. R. Cyclic mechanical property degradation during fatigue loading of cortical bone. J. Biomech. 29, 69–79 (1996).

    CAS  PubMed  Google Scholar 

  50. Akkus, O., Knott, D. F., Jepsen, K. J., Davy, D. T. & Rimnac, C. M. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important. J. Biomed. Mater. Res. A 65, 482–488 (2003).

    PubMed  Google Scholar 

  51. Burr, D. B. et al. Does microdamage accumulation affect the mechanical properties of bone? J. Biomech. 31, 337–345 (1998).

    CAS  PubMed  Google Scholar 

  52. Lee, T. C. et al. Detecting microdamage in bone. J. Anat. 203, 161–172 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Burr, D. B. Why bones bend but don’t break. J. Musculoskelet. Neuronal Interact. 11, 270–285 (2011). This paper gives a broader view of why bones fail and what prevents failure. It also partly focuses on the role of muscle in reducing stresses in bone, and the role that gait has.

    CAS  PubMed  Google Scholar 

  54. Wasserman, N., Yerramshetty, J. & Akkus, O. Microcracks colocalize within highly mineralized regions of cortical bone tissue. Eur. J. Morphol. 42, 43–51 (2005).

    PubMed  Google Scholar 

  55. Schaffler, M. B., Choi, K. & Milgrom, C. Aging and matrix microdamage accumulation in human compact bone. Bone 17, 521–525 (1995).

    CAS  PubMed  Google Scholar 

  56. Norman, T. L. & Wang, Z. Microdamage of human cortical bone: incidence and morphology in long bones. Bone 20, 375–379 (1997).

    CAS  PubMed  Google Scholar 

  57. Seref-Ferlengez, Z., Basta-Pljakic, J., Kennedy, O. D., Philemon, C. J. & Schaffler, M. B. Structural and mechanical repair of diffuse damage in cortical bone in vivo. J. Bone Miner. Res. 29, 2537–2544 (2014).

    PubMed  Google Scholar 

  58. Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–616 (2005). This report gives insight into bone pathophysiology and guides better understanding of bone failure in response to repetitive loading.

    CAS  PubMed  Google Scholar 

  59. Poundarik, A. A. et al. Dilatational band formation in bone. Proc. Natl Acad. Sci. USA 109, 19178–19183 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Burr, D. B., Schaffler, M. B. & Frederickson, R. G. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J. Biomech. 21, 939–945 (1988).

    CAS  PubMed  Google Scholar 

  61. Bass, S. L. et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J. Bone Miner. Res. 17, 2274–2280 (2002).

    CAS  PubMed  Google Scholar 

  62. Bradney, M. et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J. bone Miner. Res. 13, 1814–1821 (1998).

    CAS  PubMed  Google Scholar 

  63. Robling, A. G., Hinant, F. M., Burr, D. B. & Turner, C. H. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J. Bone Miner. Res. 17, 1545–1554 (2002).

    PubMed  Google Scholar 

  64. Warden, S. J. et al. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J. Bone Miner. Res. 20, 809–816 (2005).

    PubMed  Google Scholar 

  65. Warden, S. J., Fuchs, R. K., Castillo, A. B., Nelson, I. R. & Turner, C. H. Exercise when young provides lifelong benefits to bone structure and strength. J. Bone Miner. Res. 22, 251–259 (2007).

    PubMed  Google Scholar 

  66. Zaidi, M. Skeletal remodeling in health and disease. Nat. Med. 13, 791–801 (2007).

    CAS  PubMed  Google Scholar 

  67. Slemenda, C. W., Peacock, M., Hui, S., Zhou, L. & Johnston, C. C. Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass. J. Bone Miner. Res. 12, 676–682 (1997).

    CAS  PubMed  Google Scholar 

  68. Jandl, N. M. et al. Large osteocyte lacunae in iliac crest infantile bone are not associated with impaired mineral distribution or signs of osteocytic osteolysis. Bone 135, 115324 (2020).

    CAS  PubMed  Google Scholar 

  69. Langdahl, B., Ferrari, S. & Dempster, D. W. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther. Adv. Musculoskelet. Dis. 8, 225–235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285, 25103–25108 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Parfitt, A. M. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30, 5–7 (2002). This paper is one of the first to define targeted remodelling as an entity and lead to studies to determine a mechanism for identification and repair of microdamage that could lead to a stress fracture.

    CAS  PubMed  Google Scholar 

  72. Burr, D. B., Martin, R. B., Schaffler, M. B. & Radin, E. L. Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18, 189–200 (1985).

    CAS  PubMed  Google Scholar 

  73. Burr, D. B. & Martin, R. B. Calculating the probability that microcracks initiate resorption spaces. J. Biomech. 26, 613–616 (1993).

    CAS  PubMed  Google Scholar 

  74. Verborgt, O., Gibson, G. J. & Schaffler, M. B. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 15, 60–67 (2000).

    CAS  PubMed  Google Scholar 

  75. Bonewald, L. F. The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011).

    CAS  PubMed  Google Scholar 

  76. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    CAS  PubMed  Google Scholar 

  77. Kramer, I. et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol. Cell. Biol. 30, 3071–3085 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    CAS  PubMed  Google Scholar 

  79. Simonet, W. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    CAS  PubMed  Google Scholar 

  80. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kennedy, O. D. et al. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 50, 1115–1122 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. McCutcheon, S., Majeska, R. J., Spray, D. C., Schaffler, M. B. & Vazquez, M. Apoptotic osteocytes induce RANKL production in bystanders via purinergic signaling and activation of pannexin channels. J. Bone Miner. Res. 35, 966–977 (2020).

    CAS  PubMed  Google Scholar 

  83. Bennell, K. L., Malcolm, S. A., Wark, J. D. & Brukner, P. D. Models for the pathogenesis of stress fractures in athletes. Br. J. Sports Med. 30, 200–204 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. O’Brien, F. J., Taylor, D. & Clive Lee, T. The effect of bone microstructure on the initiation and growth of microcracks. J. Orthop. Res. Soc. 23, 475–480 (2005).

    Google Scholar 

  85. Schaffler, M. B., Radin, E. L. & Burr, D. B. Long-term fatigue behavior of compact bone at low strain magnitude and rate. Bone 11, 321–326 (1990).

    CAS  PubMed  Google Scholar 

  86. Fyhrie, D. P. et al. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann. Biomed. Eng. 26, 660–665 (1998). This paper demonstrates — in a real-life situation in which strains were measured in human bone — that muscle fatigue is associated with increased strains and altered strain distribution in the tibia. It shows the importance of muscle in regulating bone strain.

    CAS  PubMed  Google Scholar 

  87. Warden, S. J., Edwards, W. B. & Willy, R. W. Optimal load for managing low-risk tibial and metatarsal bone stress injuries in runners: the science behind the clinical reasoning. J. Orthop. Sports Phys. Ther. 51, 322–330 (2021).

    PubMed  Google Scholar 

  88. Kidd, L. J. et al. Temporal pattern of gene expression and histology of stress fracture healing. Bone 46, 369–378 (2010). This is one of the first papers to examine the histology of stress fractures and their healing.

    CAS  PubMed  Google Scholar 

  89. Jamal, S. A., Dion, N. & Ste-Marie, L.-G. Atypical femoral fractures and bone turnover. N. Engl. J. Med. 365, 1261–1262 (2011).

    CAS  PubMed  Google Scholar 

  90. Winters, M. et al. Microcrack-associated bone remodeling is rarely observed in biopsies from athletes with medial tibial stress syndrome. J. Bone Miner. Metab. 37, 496–502 (2019).

    CAS  PubMed  Google Scholar 

  91. Schilcher, J., Bernhardsson, M. & Aspenberg, P. Chronic anterior tibial stress fractures in athletes: no crack but intense remodeling. Scand. J. Med. Sci. Sports 29, 1521–1528 (2019).

    PubMed  Google Scholar 

  92. Avin, K. G., Bloomfield, S. A., Gross, T. S. & Warden, S. J. Biomechanical aspects of the muscle-bone interaction. Curr. Osteoporos. Rep. 13, 1–8 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Tenforde, A. S., Hayano, T., Jamison, S. T., Outerleys, J., & Davis, I. S. Tibial Acceleration Measured from Wearable Sensors Is Associated with Loading Rates in Injured Runners. P MR 12 678–684 (2020).

    Google Scholar 

  94. Bennell, K. L. et al. Risk factors for stress fractures in track and field athletes: a twelve-month prospective study. Am. J. Sports Med. 24, 810–818 (1996).

    CAS  PubMed  Google Scholar 

  95. Cosman, F. et al. Determinants of stress fracture risk in United States Military Academy cadets. Bone 55, 359–366 (2013).

    PubMed  Google Scholar 

  96. Beck, T. et al. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone 27, 437–444 (2000).

    CAS  PubMed  Google Scholar 

  97. Beck, T. J. et al. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male US Marine Corps recruits. J. Bone Miner. Res. 11, 645–653 (1996).

    CAS  PubMed  Google Scholar 

  98. Giladi, M. et al. Stress fractures and tibial bone width. A risk factor. J. Bone Jt. Surg. Br. 69, 326–329 (1987).

    CAS  Google Scholar 

  99. Field, A. E., Gordon, C. M., Pierce, L. M., Ramappa, A. & Kocher, M. S. Prospective study of physical activity and risk of developing a stress fracture among preadolescent and adolescent girls. Arch. Pediatr. Adolesc. Med. 165, 723–728 (2011).

    PubMed  PubMed Central  Google Scholar 

  100. Khan, M. et al. Epidemiology and impact on performance of lower extremity stress injuries in professional basketball players. Sports Health 10, 169–174 (2018).

    PubMed  Google Scholar 

  101. Schaffler, M. B. in Musculoskeletal Fatigue and Stress Fractures (eds Burr, D. B. & Milgrom, C.) (CRC Press, 2001).

  102. Dixon, S. J., Creaby, M. W. & Allsopp, A. J. Comparison of static and dynamic biomechanical measures in military recruits with and without a history of third metatarsal stress fracture. Clin. Biomech. 21, 412–419 (2006).

    Google Scholar 

  103. Milner, C. E., Hamill, J. & Davis, I. S. Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture. J. Orthop. Sports Phys. Ther. 40, 59–66 (2010).

    PubMed  Google Scholar 

  104. Pohl, M. B., Mullineaux, D. R., Milner, C. E., Hamill, J. & Davis, I. S. Biomechanical predictors of retrospective tibial stress fractures in runners. J. Biomech. 41, 1160–1165 (2008).

    PubMed  Google Scholar 

  105. Milner, C. E., Ferber, R., Pollard, C. D., Hamill, J. & Davis, I. S. Biomechanical factors associated with tibial stress fracture in female runners. Med. Sci. Sports Exerc. 38, 323–328 (2006).

    PubMed  Google Scholar 

  106. Finestone, A. et al. Risk factors for stress fractures among Israeli infantry recruits. Mil. Med. 156, 528–530 (1991).

    CAS  PubMed  Google Scholar 

  107. Sullivan, D., Warren, R. F., Pavlov, H. & Kelman, G. Stress fractures in 51 runners. Clin. Orthop. Relat. Res. 187, 188–192 (1984).

    Google Scholar 

  108. Simkin, A., Leichter, I., Giladi, M., Stein, M. & Milgrom, C. Combined effect of foot arch structure and an orthotic device on stress fractures. Foot Ankle 10, 25–29 (1989).

    CAS  PubMed  Google Scholar 

  109. Troy, K. L., Davis, I. S. & Tenforde, A. S. A narrative review of metatarsal bone stress injury in athletic populations: etiology, biomechanics, and management. PM R. 13, 1281–1290 (2021).

    PubMed  Google Scholar 

  110. Kliethermes, S. A. et al. Lower step rate is associated with a higher risk of bone stress injury: a prospective study of collegiate cross country runners. Br. J. Sports Med. 55, 851–856 (2021).

    PubMed  Google Scholar 

  111. Matijevich, E. S., Scott, L. R., Volgyesi, P., Derry, K. H. & Zelik, K. E. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running. Hum. Mov. Sci. 74, 102690 (2020).

    PubMed  Google Scholar 

  112. Scott, S. H. & Winter, D. A. Internal forces of chronic running injury sites. Med. Sci. Sports Exerc. 22, 357–369 (1990).

    CAS  PubMed  Google Scholar 

  113. Armstrong, D. W. III, Rue, J.-P. H., Wilckens, J. H. & Frassica, F. J. Stress fracture injury in young military men and women. Bone 35, 806–816 (2004).

    PubMed  Google Scholar 

  114. Hoffman, J. R., Chapnik, L., Shamis, A., Givon, U. & Davidson, B. The effect of leg strength on the incidence of lower extremity overuse injuries during military training. Mil. Med. 164, 153–156 (1999).

    CAS  PubMed  Google Scholar 

  115. Yoshikawa, T. et al. The effects of muscle fatigue on bone strain. J. Exp. Biol. 188, 217–233 (1994).

    CAS  PubMed  Google Scholar 

  116. Ferris, D. P., Louie, M. & Farley, C. T. Running in the real world: adjusting leg stiffness for different surfaces. Proc. R. Soc. Lon. Ser. B: Biol. Sci. 265, 989–994 (1998).

    CAS  Google Scholar 

  117. Milgrom, C., Finestone, A. S. & Voloshin, A. Differences in the principal strain angles during activities performed on natural hilly terrain versus engineered surfaces. Clin. Biomech. 80, 105146 (2020).

    Google Scholar 

  118. Davis, I. S. et al. Stepping back to minimal footwear: applications across the lifespan. Exerc. Sport Sci. Rev. 49, 228–243 (2021).

    PubMed  Google Scholar 

  119. Giuliani, J., Masini, B., Alitz, C. & Owens, B. D. Barefoot-simulating footwear associated with metatarsal stress injury in 2 runners. Orthopedics 34, e320–e323 (2011).

    PubMed  Google Scholar 

  120. Lieberman, D. E. et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 463, 531–535 (2010).

    CAS  PubMed  Google Scholar 

  121. Finestone, A. & Milgrom, C. How stress fracture incidence was lowered in the Israeli army: a 25-yr struggle. Med. Sci. Sports Exerc. 40, S623–S629 (2008).

    PubMed  Google Scholar 

  122. Tenforde, A. S., Sainani, K. L., Carter Sayres, L., Milgrom, C. & Fredericson, M. Participation in ball sports may represent a prehabilitation strategy to prevent future stress fractures and promote bone health in young athletes. PM R. 7, 222–225 (2015).

    PubMed  Google Scholar 

  123. Tenforde, A. S., Parziale, A. L., Popp, K. L. & Ackerman, K. E. Low bone mineral density in male athletes is associated with bone stress injuries at anatomic sites with greater trabecular composition. Am. J. Sports Med. 46, 30–36 (2018).

    PubMed  Google Scholar 

  124. Barrack, M. T. et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am. J. Sports Med. 42, 949–958 (2014).

    PubMed  Google Scholar 

  125. Mountjoy, M. et al. The IOC consensus statement: beyond the female athlete triad — relative energy deficiency in sport (RED-S). Br. J. Sports Med. 48, 491–497 (2014).

    PubMed  Google Scholar 

  126. Mountjoy, M. et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br. J. Sports Med. 52, 687–697 (2018). This International Olympic Committee consensus statement outlines terminology on low energy availability in athletes.

    PubMed  Google Scholar 

  127. Elliott-Sale, K. J., Tenforde, A. S., Parziale, A. L., Holtzman, B. & Ackerman, K. E. Endocrine effects of relative energy deficiency in sport. Int. J. Sport Nutr. Exerc. Metab. 28, 335–349 (2018).

    CAS  PubMed  Google Scholar 

  128. Papageorgiou, M. et al. Effects of reduced energy availability on bone metabolism in women and men. Bone 105, 191–199 (2017).

    CAS  PubMed  Google Scholar 

  129. Hutson, M. J., O’Donnell, E., Brooke-Wavell, K., Sale, C. & Blagrove, R. C. Effects of low energy availability on bone health in endurance athletes and high-impact exercise as a potential countermeasure: a narrative review. Sports Med. 51, 391–403 (2021).

    PubMed  Google Scholar 

  130. De Souza, M. J. et al. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br. J. Sports Med. 48, 289 (2014).

    PubMed  Google Scholar 

  131. Nattiv, A. et al. The Male Athlete Triad — a Consensus Statement From The Female and Male Athlete Triad Coalition Part 1: definition and scientific basis. Clin. J. Sport. Med. 31, 335–348 (2021).

    PubMed  Google Scholar 

  132. Tenforde, A. S. et al. Sport and triad risk factors influence bone mineral density in collegiate athletes. Med. Sci. Sports Exerc. 50, 2536–2543 (2018).

    PubMed  Google Scholar 

  133. Ackerman, K. E. et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J. Clin. Endocrinol. Metab. 96, 3123–3133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lappe, J. et al. Calcium and vitamin D supplementation decreases incidence of stress fractures in female Navy recruits. J. Bone Miner. Res. 23, 741–749 (2008).

    CAS  PubMed  Google Scholar 

  135. Sonneville, K. R. et al. Vitamin D, calcium, and dairy intakes and stress fractures among female adolescents. Arch. Pediatr. Adolesc. Med. 166, 595–600 (2012).

    PubMed  PubMed Central  Google Scholar 

  136. Nieves, J. W. et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. PM R. 2, 740–750 (2010). quiz 794.

    PubMed  Google Scholar 

  137. Burgi, A. A. et al. High serum 25-hydroxyvitamin D is associated with a low incidence of stress fractures. J. Bone Miner. Res. 26, 2371–2377 (2011).

    CAS  PubMed  Google Scholar 

  138. Putman, M. S. et al. Differences in skeletal microarchitecture and strength in African-American and white women. J. Bone Miner. Res. 28, 2177–2185 (2013).

    PubMed  Google Scholar 

  139. Popp, K. L. et al. Trabecular microstructure is influenced by race and sex in Black and White young adults. Osteoporos. Int. 30, 201–209 (2019).

    CAS  PubMed  Google Scholar 

  140. Varley, I. et al. Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury. Purinergic Signal. 12, 103–113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lappe, J. M., Stegman, M. R. & Recker, R. R. The impact of lifestyle factors on stress fractures in female Army recruits. Osteoporos. Int. 12, 35–42 (2001).

    CAS  PubMed  Google Scholar 

  142. Poonuru, S., Findling, J. W. & Shaker, J. L. Lower extremity insufficiency fractures: an underappreciated manifestation of endogenous Cushing’s syndrome. Osteoporos. Int. 27, 3645–3649 (2016).

    CAS  PubMed  Google Scholar 

  143. Hughes, J. M. et al. Nonsteroidal anti-inflammatory drug prescriptions are associated with increased stress fracture diagnosis in the US Army population. J. Bone Miner. Res. 34, 429–436 (2019).

    CAS  PubMed  Google Scholar 

  144. Apte, S. et al. Biomechanical response of the lower extremity to running-induced acute fatigue: a systematic review. Front. Physiol. 12, 646042 (2021).

    PubMed  PubMed Central  Google Scholar 

  145. Matheson, G. et al. Stress fractures in athletes: a study of 320 cases. Am. J. Sports Med. 15, 46–58 (1987).

    CAS  PubMed  Google Scholar 

  146. Johnson, A. W., Weiss, C. B. Jr & Wheeler, D. L. Stress fractures of the femoral shaft in athletes — more common than expected: a new clinical test. Am. J. Sports Med. 22, 248–256 (1994).

    CAS  PubMed  Google Scholar 

  147. Madden, C. & Mellion, M. Sever’s disease and other causes of heel pain in adolescents. Am. Fam. Phys. 54, 1995–2000 (1996).

    CAS  Google Scholar 

  148. Milgrom, C. et al. Medial tibial stress fracture diagnosis and treatment guidelines. J. Sci. Med. sport. 24, 526–530 (2021).

    PubMed  Google Scholar 

  149. Schneiders, A. G. et al. The ability of clinical tests to diagnose stress fractures: a systematic review and meta-analysis. J. Orthopa. Sports Phys. Ther. 42, 760–771 (2012).

    Google Scholar 

  150. Shapiro, M., Zubkov, K. & Landau, R. Diagnosis of stress fractures in military trainees: a large-scale cohort. BMJ Mil. Health https://doi.org/10.1136/bmjmilitary-2020-001406 (2020).

    Article  PubMed  Google Scholar 

  151. Papalada, A. et al. Ultrasound as a primary evaluation tool of bone stress injuries in elite track and field athletes. Am. J. Sports Med. 40, 915–919 (2012).

    PubMed  Google Scholar 

  152. Hoenig, T., Tenforde, A., Strahl, A., Rolvien, T. & Hollander, K. Does MRI grading correlate with return to sports following bone stress injuries? A systematic review and meta-analysis. Am. J. Sports Med. 50, 834–844 (2022).

    PubMed  Google Scholar 

  153. Rolvien, T. et al. Clinical and radiological characterization of patients with immobilizing and progressive stress fractures in methotrexate osteopathy. Calcif. Tissue Int. 108, 219–230 (2021).

    CAS  PubMed  Google Scholar 

  154. Kiuru, M. J., Pihlajamaki, H. K., Hietanen, H. J. & Ahovuo, J. A. MR imaging, bone scintigraphy, and radiography in bone stress injuries of the pelvis and the lower extremity. Acta Radiol. 43, 207–212 (2002).

    CAS  PubMed  Google Scholar 

  155. Eustace, S. et al. MR imaging of bone oedema: mechanisms and interpretation: pictorial review. Clin. Radiol. 56, 4–12 (2001).

    CAS  PubMed  Google Scholar 

  156. Bergman, A., Fredericson, M., Ho, C. & Matheson, G. O. Asymptomatic tibial stress reactions: MRI detection and clinical follow-up in distance runners. AJR 183, 635–638 (2004).

    PubMed  Google Scholar 

  157. Kaeding, C. & Miller, T. The comprehensive description of stress fractures: a new classification system. J. Bone Jt Surg. Am. 95, 1214–1220 (2013).

    Google Scholar 

  158. Nattiv, A. et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am. J. Sports Med. 41, 1930–1941 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. Rohena-Quinquilla, I. R., Rohena-Quinquilla, F. J., Scully, W. F. & Evanson, J. R. L. Femoral neck stress injuries: analysis of 156 cases in a U.S. Military population and proposal of a new MRI classification system. AJR 210, 601–607 (2018).

    PubMed  Google Scholar 

  160. Arendt, E., Agel, J., Heikes, C. & Griffiths, H. Stress injuries to bone in college athletes - a retrospective review of experience at a single institution. Am. J. Sports Med. 31, 959–968 (2003).

    PubMed  Google Scholar 

  161. Fredericson, M., Bergman, A. G., Hoffman, K. L. & Dillingham, M. S. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am. J. Sports Med. 23, 472–481 (1995). These researchers describe a new classification system to grade bone stress injuries at a time when MRI became the imaging modality of choice.

    CAS  PubMed  Google Scholar 

  162. Beck, B. R. et al. Tibial stress injury: relationship of radiographic, nuclear medicine bone scanning, MR imaging, and CT severity grades to clinical severity and time to healing. Radiology 263, 811–818 (2012).

    PubMed  Google Scholar 

  163. Shaffer, R., Brodine, S., Almeida, S., Williams, K. & Ronaghy, S. Use of simple measures of physical activity to predict stress fractures in young men undergoing a rigorous physical training program. Am. J. Epidemiol. 149, 236–242 (1999).

    CAS  PubMed  Google Scholar 

  164. Ackerman, K. et al. Low energy availability surrogates correlate with health and performance consequences of relative energy deficiency in sport. Br. J. Sports Med. 53, 628–633 (2019).

    PubMed  Google Scholar 

  165. Lima, F., De Falco, V., Baima, J., Carazzato, J. G. & Pereira, R. M. Effect of impact load and active load on bone metabolism and body composition of adolescent athletes. Med. Sci. Sports Exerc. 33, 1318–1323 (2001).

    CAS  PubMed  Google Scholar 

  166. Duarte Sosa, D. & Fink Eriksen, E. Women with previous stress fractures show reduced bone material strength. Acta Orthop. 87, 626–631 (2016).

    PubMed  PubMed Central  Google Scholar 

  167. Warden, S. J., Liu, Z., Fuchs, R. K., van Rietbergen, B. & Moe, S. M. Reference data and calculators for second-generation HR-pQCT measures of the radius and tibia at anatomically standardized regions in white adults. Osteoporos. Int. 33, 791–806 (2021).

    PubMed  Google Scholar 

  168. Schnackenburg, K. E., Macdonald, H. M., Ferber, R., Wiley, J. P. & Boyd, S. K. Bone quality and muscle strength in female athletes with lower limb stress fractures. Med. Sci. Sports Exerc. 43, 2110–2119 (2011).

    PubMed  Google Scholar 

  169. Gama, E. et al. Low energy availability interferes with exercise-associated bone effects in female long-distance triathletes as detected by HR-pQCT. J. Clin. Densitom., https://doi.org/10.1016/j.jocd.2021.01.013.

  170. Schanda, J. E. et al. Bone stress injuries are associated with differences in bone microarchitecture in male professional soldiers. J. Orthop. Res. 37, 2516–2523 (2019).

    PubMed  Google Scholar 

  171. Jones, B. H., Thacker, S. B., Gilchrist, J., Kimsey, C. D. Jr & Sosin, D. M. Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiol. Rev. 24, 228–247 (2002).

    PubMed  Google Scholar 

  172. Gabbett, T. J. The training-injury prevention paradox: should athletes be training smarter and harder? Br. J. Sports Med. 50, 273–280 (2016).

    PubMed  Google Scholar 

  173. Tenforde, A. S. et al. Overuse injuries in high school runners: lifetime prevalence and prevention strategies. PM R. 3, 125–131 (2011). quiz 131.

    PubMed  Google Scholar 

  174. Curry, E. J., Logan, C., Ackerman, K., McInnis, K. C. & Matzkin, E. G. Female athlete triad awareness among multispecialty physicians. Sports Med. Open 1, 38 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Milgrom, C., Simkin, A., Eldad, A., Nyska, M. & Finestone, A. Using bone’s adaptation ability to lower the incidence of stress fractures. Am. J. Sports Med. 28, 245–251 (2000).

    CAS  PubMed  Google Scholar 

  176. Boden, B. P. & Osbahr, D. C. High-risk stress fractures: evaluation and treatment. J. Am. Acad. Orthop. Surg. 8, 344–353 (2000). This paper highlights the importance of identifying ‘high-risk’ bone stress injuries and is a ‘must-read’ review for every sports medicine clinician.

    CAS  PubMed  Google Scholar 

  177. Boden, B. P., Osbahr, D. C. & Jimenez, C. Low-risk stress fractures. Am. J. Sports Med. 29, 100–111 (2001).

    CAS  PubMed  Google Scholar 

  178. Warden, S. J., Davis, I. S. & Fredericson, M. Management and prevention of bone stress injuries in long-distance runners. J. Orthop. Sports Phys. Ther. 44, 749–765 (2014).

    PubMed  Google Scholar 

  179. Saxena, A. & Fullem, B. Navicular stress fractures: a prospective study on athletes. Foot Ankle Int. 27, 917–921 (2006).

    PubMed  Google Scholar 

  180. Warden, S. J. Prophylactic use of NSAIDs by athletes: a risk/benefit assessment. Phys. Sportsmed. 38, 132–138 (2010).

    PubMed  Google Scholar 

  181. Ackerman, K. E. et al. Effects of estrogen replacement on bone geometry and microarchitecture in adolescent and young adult oligoamenorrheic athletes: a randomized trial. J. Bone Miner. Res 35, 248–260 (2020).

    CAS  PubMed  Google Scholar 

  182. Sloan, A. V., Martin, J. R., Li, S. & Li, J. Parathyroid hormone and bisphosphonate have opposite effects on stress fracture repair. Bone 47, 235–240 (2010).

    CAS  PubMed  Google Scholar 

  183. Harvey, J. A., Zobitz, M. M. & Pak, C. Y. Dose dependency of calcium absorption: a comparison of calcium carbonate and calcium citrate. J. Bone Miner. Res. 3, 253–258 (1988).

    CAS  PubMed  Google Scholar 

  184. Lawley, R., Syrop, I. P. & Fredericson, M. Vitamin D for improved bone health and prevention of stress fractures: a review of the literature. Curr. Sports Med. Rep. 19, 202–208 (2020).

    PubMed  Google Scholar 

  185. Amrein, K. et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur. J. Clin. Nutr. 74, 1498–1513 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Giustina, A. et al. Controversies in Vitamin D: a statement from the Third International Conference. JBMR Plus 4, e10417 (2020).

    PubMed  PubMed Central  Google Scholar 

  187. Bouillon, R. et al. The health effects of vitamin D supplementation: evidence from human studies. Nat. Rev. Endocrinol. 18, 96–110 (2022).

    CAS  PubMed  Google Scholar 

  188. Larson-Meyer, D. E. & Willis, K. S. Vitamin D and athletes. Curr. Sports Med. Rep. 9, 220–226 (2010).

    PubMed  Google Scholar 

  189. Gan, T. Y., Kuah, D. E., Graham, K. S. & Markson, G. Low-intensity pulsed ultrasound in lower limb bone stress injuries: a randomized controlled trial. Clin. J. Sport. Med. 24, 457–460 (2014).

    PubMed  Google Scholar 

  190. Beck, B. R. et al. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am. J. Sports Med. 36, 545–553 (2008).

    PubMed  Google Scholar 

  191. Daish, C., Blanchard, R., Fox, K., Pivonka, P. & Pirogova, E. The application of pulsed electromagnetic fields (PEMFs) for bone fracture repair: past and perspective findings. Ann. Biomed. Eng. 46, 525–542 (2018).

    CAS  PubMed  Google Scholar 

  192. Taki, M., Iwata, O., Shiono, M., Kimura, M. & Takagishi, K. Extracorporeal shock wave therapy for resistant stress fracture in athletes: a report of 5 cases. Am. J. Sports Med. 35, 1188–1192 (2007).

    PubMed  Google Scholar 

  193. Moretti, B. et al. Shock waves in the treatment of stress fractures. Ultrasound Med. Biol. 35, 1042–1049 (2009).

    PubMed  Google Scholar 

  194. Mallee, W. H. et al. Surgical versus conservative treatment for high-risk stress fractures of the lower leg (anterior tibial cortex, navicular and fifth metatarsal base): a systematic review. Br. J. Sports Med. 49, 370–376 (2015).

    PubMed  Google Scholar 

  195. Khan, K. M., Fuller, P. J., Brukner, P. D., Kearney, C. & Burry, H. C. Outcome of conservative and surgical management of navicular stress fracture in athletes. Eighty-six cases proven with computerized tomography. Am. J. Sports Med. 20, 657–666 (1992).

    CAS  PubMed  Google Scholar 

  196. Torg, J. S., Moyer, J., Gaughan, J. P. & Boden, B. P. Management of tarsal navicular stress fractures: conservative versus surgical treatment: a meta-analysis. Am. J. Sports Med. 38, 1048–1053 (2010).

    PubMed  Google Scholar 

  197. O’Malley, M. et al. Operative treatment of fifth metatarsal jones fractures (Zones II and III) in the NBA. Foot Ankle Int. 37, 488–500 (2016).

    PubMed  Google Scholar 

  198. Varner, K. E., Younas, S. A., Lintner, D. M. & Marymont, J. V. Chronic anterior midtibial stress fractures in athletes treated with reamed intramedullary nailing. Am. J. Sports Med. 33, 1071–1076 (2005).

    PubMed  Google Scholar 

  199. Chahla, J. et al. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopaedic literature. J. Bone Jt. Surg. Am. 99, 1769–1779 (2017).

    Google Scholar 

  200. Robertson, G. & Maffulli, N. in Stress Fractures in Athletes: Diagnosis and Management (eds Miller, T. L. & Kaeding, C. C.) 151–164 (Springer, 2020).

  201. Harmon, K. G. Lower extremity stress fractures. Clin. J. Sport. Med. 13, 358–364 (2003).

    PubMed  Google Scholar 

  202. Popp, K. L. et al. Changes in volumetric bone mineral density over 12 months after a tibial bone stress injury diagnosis: implications for return to sports and military duty. Am. J. Sports Med. 49, 226–235 (2021).

    PubMed  Google Scholar 

  203. Ardern, C. L. et al. 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. Br. J. Sports Med. 50, 853–864 (2016).

    PubMed  Google Scholar 

  204. Millar, N. L. et al. Tendinopathy. Nat. Rev. Dis. Prim. 7, 1–21 (2021).

    PubMed  Google Scholar 

  205. Valovich McLeod, T. C., Bay, R. C., Parsons, J. T., Sauers, E. L. & Snyder, A. R. Recent injury and health-related quality of life in adolescent athletes. J. Athl. Train. 44, 603–610 (2009).

    PubMed  PubMed Central  Google Scholar 

  206. Reis, J. P., Trone, D. W., Macera, C. A. & Rauh, M. J. Factors associated with discharge during marine corps basic training. Mil. Med. 172, 936–941 (2007).

    PubMed  Google Scholar 

  207. Bull, F. C. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451–1462 (2020).

    PubMed  Google Scholar 

  208. Wildemann, B. et al. Non-union bone fractures. Nat. Rev. Dis. Prim. 7, 57 (2021).

    PubMed  Google Scholar 

  209. Warden, S. in Bone Stress Injuries in Athletes: Diagnosis, Treatment, and Prevention (eds Tenforde, A. & Fredericson, M.) 3–12 (Springer, 2022).

  210. Gao, C., Peng, S., Feng, P. & Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res. 5, 17059 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Seeman, E. & Martin, T. J. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat. Rev. Rheumatol. 15, 225–236 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

S.J.W.: contribution was facilitated by support from the National Institutes of Health (NIH/NIAMS P30 AR072581) and National Basketball Association–General Electric Healthcare Orthopedics and Sports Medicine Collaboration. K.L.P.: the opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the U.S. Army or the Department of Defense. Any citations of commercial organizations and trade names in this report do not constitute an official U.S. Army or Department of Defense endorsement or approval of the products or services of these organizations.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.H.); Epidemiology (K.H.); Risk factors (K.L.P., K.E.A. and T.R.); Pathophysiology (T.R., D.B.B. and M.L.B.); Diagnosis (B.R.B.); Treatment (S.J.W. and A.S.T.); Quality of life (T.H.); Outlook (T.H.). All authors critically revised all aspects of the article. T.H., A.S.T. and S.J.W. were responsible for overall handling of the manuscript.

Corresponding authors

Correspondence to Tim Hoenig, Adam S. Tenforde or Stuart J. Warden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks M. Baggaley, who co-reviewed with B. Edwards; G. Robertson, who co-reviewed with N. Maffulli; A. Kemper; M. Schaffler; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Stress fractures

Bone stress injuries with radiologically visible sclerosis or fracture line.

Stress reactions

Bone stress injuries without radiologically visible sclerosis or fracture line.

Bone stress injury

Focal failure of bone tissue to repeated loading that results in localized pain and/or an increased risk of complete bone fracture to typically tolerable loads.

Stress

The amount of force experienced per unit area of tissue when an external force is applied.

Strain

The change in the dimensions of bone tissue when stress is applied.

Material fatigue

The formation and propagation of cracks in a material due to repeated loading.

Microdamage

Microscopic damage in bone tissue, often in the form of small cracks, in response to repeated stress, which stimulates targeted remodelling.

Targeted remodelling

The coordinated and sequential action of bone-resorbing osteoclasts and bone-forming osteoblasts to remove bone microdamage and replace it with new bone.

Insufficiency fracture

A bone injury due to loads within the normal range being applied to an abnormal bone or a bone with abnormal biology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoenig, T., Ackerman, K.E., Beck, B.R. et al. Bone stress injuries. Nat Rev Dis Primers 8, 26 (2022). https://doi.org/10.1038/s41572-022-00352-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00352-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing