Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the physiology of human defaecation and disorders of continence and evacuation

Abstract

The act of defaecation, although a ubiquitous human experience, requires the coordinated actions of the anorectum and colon, pelvic floor musculature, and the enteric, peripheral and central nervous systems. Defaecation is best appreciated through the description of four phases, which are, temporally and physiologically, reasonably discrete. However, given the complexity of this process, it is unsurprising that disorders of defaecation are both common and problematic; almost everyone will experience constipation at some time in their life and many will develop faecal incontinence. A detailed understanding of the normal physiology of defaecation and continence is critical to inform management of disorders of defaecation. During the past decade, there have been major advances in the investigative tools used to assess colonic and anorectal function. This Review details the current understanding of defaecation and continence. This includes an overview of the relevant anatomy and physiology, a description of the four phases of defaecation, and factors influencing defaecation (demographics, stool frequency/consistency, psychobehavioural factors, posture, circadian rhythm, dietary intake and medications). A summary of the known pathophysiology of defaecation disorders including constipation, faecal incontinence and irritable bowel syndrome is also included, as well as considerations for further research in this field.

Key points

  • Defaecation is a fundamental physiological process resulting in the evacuation of faeces; it is dependent on the coordination of neural, muscular, hormonal and cognitive systems.

  • Several factors influence defaecation, including gastrointestinal transit, stool volume and/or consistency, and dietary intake.

  • Defaecation can be described in terms of four reasonably discrete temporal phases: basal phase, pre-expulsive phase, expulsive phase and end phase.

  • The latest imaging and technological advances (such as high-resolution colonic and anorectal manometry, cine-MRI and magnetic resonance defaecography and wireless capsules) have improved our knowledge of defaecatory mechanisms.

  • Knowledge of the physiology of normal defaecation could inform management of common disorders of defaecation such as constipation and faecal incontinence; however, future research needs are highlighted in this article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuromuscular anatomy of the colon and anorectum.
Fig. 2: Principal events before and during defaecation.
Fig. 3: High-resolution colonic manometry recordings in four healthy volunteers.
Fig. 4: Anorectal opening mechanism during defaecation.
Fig. 5: Barium (X-ray) defaecography images.

Similar content being viewed by others

References

  1. Huizinga, J. D. & Lammers, W. J. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1–G8 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Brookes, S. J., Dinning, P. G. & Gladman, M. A. Neuroanatomy and physiology of colorectal function and defaecation: from basic science to human clinical studies. Neurogastroenterol. Motil. 21 (Suppl. 2), 9–19 (2009).

    Article  PubMed  Google Scholar 

  3. Nurko, S. & Scott, S. M. Coexistence of constipation and incontinence in children and adults. Best Pract. Res. Clin. Gastroenterol. 25, 29–41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cauley, C. E. et al. A quality-of-life comparison of two fecal incontinence phenotypes: isolated fecal incontinence versus concurrent fecal incontinence with constipation. Dis. Colon. Rectum 62, 63–70 (2019).

    Article  PubMed  Google Scholar 

  5. Vollebregt, P., Wiklendt, L., Dinning, P. G., Knowles, C. H. & Scott, S. M. Coexistent faecal incontinence and constipation: a cross-sectional study of 4,027 adults undergoing specialist assessment. EClinicalMedicine 27, 100572 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun, S. et al. Impact of chronic constipation on health-related quality of life, work productivity, and healthcare resource use: an analysis of the National Health and Wellness Survey. Dig. Dis. Sci. 56, 63–70 (2011).

    Article  Google Scholar 

  7. Nellesen, D., Yee, K., Chawla, A., Lewis, B. E. & Carson, R. T. A systematic review of the economic and humanistic burden of illness in irritable bowel syndrome and chronic constipation. J. Manag. Care Pharm. 19, 755–764 (2013).

    PubMed  Google Scholar 

  8. Sperber, A. et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation global study. Gastroenterology 160, 99–114.e3 (2021).

    Article  PubMed  Google Scholar 

  9. Peery, A. et al. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology 143, 1179–1187 (2012).

    Article  PubMed  Google Scholar 

  10. Miner, P. B. Jr. Economic and personal impact of fecal and urinary incontinence. Gastroenterology 126, S8–S13 (2004).

    Article  PubMed  Google Scholar 

  11. Peery, A. et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology 156, 254–272 (2019).

    Article  PubMed  Google Scholar 

  12. Xu, X., Menees, S. B., Zochowski, M. K. & Fenner, D. E. Economic cost of fecal incontinence. Dis. Colon. Rectum 55, 586–598 (2012).

    Article  PubMed  Google Scholar 

  13. Palit, S., Lunniss, P. J. & Scott, S. M. The physiology of human defecation. Dig. Dis. Sci. 57, 1445–1464 (2012).

    Article  PubMed  Google Scholar 

  14. Dinning, P. G. et al. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry. Neurogastroenterol. Motil. 26, 1443–1457 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin, A. Y. et al. High-resolution anatomic correlation of cyclic motor patterns in the human colon: evidence of a rectosigmoid brake. Am. J. Physiol. Gastrointest. Liver Physiol 312, G508–G515 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carrington, E. V. et al. Traditional measures of normal anal sphincter function using high-resolution anorectal manometry (HRAM) in 115 healthy volunteers. Neurogastroenterol. Motil. 26, 625–635 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Carrington, E., Knowles, C. H., Grossi, U. & Scott, S. M. High-resolution anorectal manometry measures are more accurate than conventional measures in detecting anal hypocontractility in women with fecal incontinence. Clin. Gastroenterol. Hepatol. 17, 477–485 (2019).

    Article  PubMed  Google Scholar 

  18. Nandhra, G. et al. Normative values for region-specific colonic and gastrointestinal transit times in 111 healthy volunteers using the 3D-Transit electromagnet tracking system: influence of age, gender, and body mass index. Neurogastroenterol. Motil. 32, e13734 (2020).

    Article  PubMed  Google Scholar 

  19. Wang, Y. et al. Regional gastrointestinal transit and pH studied in 215 healthy volunteers using the wireless motility capsule: influence of age, gender, study country and testing protocol. Aliment. Pharmacol. Ther. 42, 761–772 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Kirchhoff, S. et al. Assessment of colon motility using simultaneous manometric and functional cine-MRI analysis: preliminary results. Abdom. Imaging 36, 24–30 (2011).

    Article  PubMed  Google Scholar 

  21. Grossi, U. et al. Systematic review with meta-analysis: defecography should be a first-line diagnostic modality in patients with refractory constipation. Aliment. Pharmacol. Ther. 48, 1186–1201 (2018).

    Article  PubMed  Google Scholar 

  22. Lam, C. et al. Colonic response to laxative ingestion as assessed by MRI differs in constipated irritable bowel syndrome compared to functional constipation. Neurogastroenterol. Motil. 28, 861–870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meiss, R. Mechanical properties of gastrointestinal smooth muscle. In Comprehensive Physiology (ed. Terjung, R.) https://doi.org/10.1002/cphy.cp060108 (2011).

  24. Phillips, M., Patel, A., Meredith, P., Will, O. & Brassett, C. Segmental colonic length and mobility. Ann. R. Coll. Surg. Engl. 97, 439–444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bass, L. & Wershil, B. K. in Sleisenger and Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology/Diagnosis/Management 10th edn Vol. 2 Ch. 98 (eds Feldman, M., Friedman, L. S. & Brandt, L. J.) 1649–1678 (Elsevier Saunders, 2016).

  26. Raahave, D., Christensen, E., Loud, F. B. & Knudsen, L. L. Correlation of bowel symptoms with colonic transit, length, and faecal load in functional faecal retention. Dan. Med. Bull. 56, 83–88 (2009).

    PubMed  Google Scholar 

  27. Southwell, B. Colon lengthening slows transit: is this the mechanism underlying redundant colon or slow transit constipation? J. Physiol. 588, 3343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heredia, D., Dickson, E. J., Bayguinov, P. O., Hennig, G. W. & Smith, T. K. Colonic elongation inhibits pellet propulsion and migrating motor complexes in the murine large bowel. J. Physiol. 588, 2919–2934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Musial, F. & Crowell, M. D. Rectal adaptation to distension: implications for the determination of perception thresholds. Physiol. Behav. 58, 1145–1148 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Madoff, R., Orrom, W. J., Rothenberger, D. A. & Goldberg, S. M. Rectal compliance: a critical reappraisal. Int. J. Colorectal Dis. 5, 37–40 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. D’Souza, N. et al. Definition of the rectum: an international, expert-based delphi consensus. Ann. Surg. 270, 955–959 (2019).

    Article  PubMed  Google Scholar 

  32. Jung, S. A. et al. Closure mechanism of the anal canal in women: assessed by three-dimensional ultrasound imaging. Dis. Colon. Rectum 51, 932–939 (2008).

    Article  PubMed  Google Scholar 

  33. Luft, F. et al. Functional luminal imaging probe: a new technique for dynamic evaluation of mechanical properties of the anal canal. Tech. Coloproctol. 16, 451–457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, J. M. & Kim, N. K. Essential anatomy of the anorectum for colorectal surgeons focused on the gross anatomy and histologic findings. Ann. Coloproctol. 34, 59–71 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nivatvongs, S., Stern, H. S. & Fryd, D. S. The length of the anal canal. Dis. Colon. Rectum 24, 600–601 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. Vollebregt, P. et al. Functional anal canal length measurement using high-resolution anorectal manometry to investigate anal sphincter dysfunction in patients with fecal incontinence or constipation. Neurogastroenterol. Motil. 31, e13532 (2019).

    Article  PubMed  CAS  Google Scholar 

  37. Oblizajek, N. et al. Anorectal pressures measured with high‐resolution manometry in healthy people — normal values and asymptomatic pelvic floor dysfunction. Neurogastroenterol. Motil. 31, e13597 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kim, A. How to interpret a functional or motility test — defecography. J. Neurogastroenterol. Motil. 17, 416–420 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Palit, S. et al. Evacuation proctography: a reappraisal of normal variability. Colorectal Dis. 16, 538–546 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Rao, S. S. Pathophysiology of adult fecal incontinence. Gastroenterology 126, S14–S22 (2004).

    Article  PubMed  Google Scholar 

  41. Gibbons, C. P., Trowbridge, E. A., Bannister, J. J. & Read, N. W. Role of anal cushions in maintaining continence. Lancet 1, 886–888 (1986).

    Article  CAS  PubMed  Google Scholar 

  42. Treitz, W. Ueber einen neuen Muskel am Duodenum des Menschen, uber elsatische Sehnen, und einige andere anatomische Verhaltnisse. Vierteljahrschrift Praktische Heilkunde 37, 133–144 (1853).

    Google Scholar 

  43. Lunniss, P. & Phillips, R. K. S. Anatomy and function of the anal longitudinal muscle. Br. J. Surg. 79, 882–884 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Lestar, B., Penninckx, F. & Kerremans, R. The composition of anal basal pressure. An in vivo and in vitro study in man. Int. J. Colorectal Dis. 4, 118–122 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Lunniss, P. Aspects of fistula-in-ano. Master of Surgery thesis, Univ. London (1993).

  46. O’Kelly, T., Brading, A. & Mortensen, N. Nerve mediated relaxation of the human internal anal sphincter: the role of nitric oxide. Gut 34, 689–693 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chakder, S. & Rattan, S. Release of nitric oxide by activation of nonadrenergic noncholinergic neurons of internal anal sphincter. Am. J. Physiol. Gastrointest. Liver Physiol. 264, G7–G12 (1993).

    Article  CAS  Google Scholar 

  48. O’Kelly, T., Brading, A. & Mortensen, N. In vitro response of the human and canal longitudinal muscle layer to cholinergic and adrenergic stimulation: evidence of sphincter specialization. Br. J. Surg. 80, 1337–1341 (1993).

    Article  PubMed  Google Scholar 

  49. Rattan, S. The internal anal sphincter: regulation of smooth muscle tone and relaxation. Neurogastroent Motil. 17 (Suppl. 1), 50–59 (2005).

    Article  Google Scholar 

  50. Frenckner, B. & Euler, C. V. Influence of pudendal block on the function of the anal sphincters. Gut 16, 482–489 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schweiger, M. Method for determining individual contributions of voluntary and involuntary anal sphincters to resting tone. Dis. Colon. Rectum 22, 415–416 (1979).

    Article  CAS  PubMed  Google Scholar 

  52. Wankling, W. J., Brown, B. H., Collins, C. D. & Duthie, H. L. Basal electrical activity in the anal canal in man. Gut 9, 457–460 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kerremans, R. Electrical activity and motility of the internal anal sphincter: an “in vivo” electrophysiological study in man. Acta Gastroenterol. Belg. 31, 465–482 (1968).

    CAS  PubMed  Google Scholar 

  54. Orkin, B., Hanson, R. B., Kelly, K. A., Phillips, S. F. & Dent, J. Human anal motility while fasting, after feeding, and during sleep. Gastroenterology 100, 1016–1023 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Keef, K. & Cobine, C. A. Control of motility in the internal anal sphincter. J. Neurogastroenterol. Motil. 25, 189–204 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Broens, P. M., Penninckx, F. M. & Ochoa, J. B. Fecal continence revisited: the anal external sphincter continence reflex. Dis. Colon. Rectum 56, 1273–1281 (2013).

    Article  PubMed  Google Scholar 

  57. Mittal, R. K., Bhargava, V., Sheean, G., Ledgerwood, M. & Sinha, S. Purse-string morphology of external anal sphincter revealed by novel imaging techniques. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G505–G514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grigorescu, B. A. et al. Innervation of the levator ani muscles: description of the nerve branches to the pubococcygeus, iliococcygeus, and puborectalis muscles. Int. Urogynecol J. Pelvic Floor. Dysfunct. 19, 107–116 (2008).

    Article  PubMed  Google Scholar 

  59. Bharucha, A. E. Pelvic floor: anatomy and function. Neurogastroenterol. Motil. 18, 507–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Petros, P. & Swash, M. The musculo-elastic theory of anorectal function and dysfunction. Pelviperineology 27, 89–93 (2008).

    Google Scholar 

  61. Herschorn, S. Female pelvic floor anatomy: the pelvic floor, supporting structures, and pelvic organs. Rev. Urol. 6 (Suppl. 5), 2–10 (2004).

    Google Scholar 

  62. LaCross, A., Groff, M. & Smaldone, A. Obstetric anal sphincter injury and anal incontinence following vaginal birth: a systematic review and meta-analysis. J. Midwifery Womens Health 60, 37–47 (2015).

    Article  PubMed  Google Scholar 

  63. Snooks, S. J., Setchell, M., Swash, M. & Henry, M. M. Injury to innervation of pelvic floor sphincter musculature in childbirth. Lancet 2, 546–550 (1984).

    Article  CAS  PubMed  Google Scholar 

  64. Snooks, S. J., Swash, M., Mathers, S. E. & Henry, M. M. Effect of vaginal delivery on the pelvic floor: a 5-year follow-up. Br. J. Surg. 77, 1358–1360 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Hieda, K. et al. Nerves in the intersphincteric space of the human anal canal with special reference to their continuation to the enteric nerve plexus of the rectum. Clin. Anat. 26, 843–854 (2013).

    PubMed  Google Scholar 

  66. Wang, X., Chedid, V., Vijayvargiya, P. & Camilleri, M. Clinical features and associations of descending perineum syndrome in 300 adults with constipation in gastroenterology referral practice. Dig. Dis. Sci. 65, 3688–3695 (2020).

    Article  PubMed  Google Scholar 

  67. Dinning, P., Costa, M. & Brookes, S. J. H. in Sleisenger and Fordtran’s Gastrointestinal and Liver Disease 11th edn Vol. 2 Ch. 100 (eds Feldman, M., Friedman, L. S. & Brandt, L. J.) 1595–1610 (Elsevier, 2021).

  68. Scott, S. Manometric techniques for the evaluation of colonic motor activity: current status. Neurogastroenterol. Motil. 15, 483–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Corsetti, M. et al. First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques. Nat. Rev. Gastroenterol. Hepatol. 16, 559–579 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Spencer, N., Dinning, P. G., Brookes, S. J. & Costa, M. Insights into the mechanisms underlying colonic motor patterns. J. Physiol. 594, 4099–4116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moonka, R. & Carmichael, J. C. in Fundamentals of Anorectal Surgery (eds Beck, D., Steele, S. & Wexner, S.) 1–21 (Springer, 2018).

  72. Dinning, P., Costa, M. & Brookes, S. J. H. in Sleisenger and Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology/Diagnosis/Management 10th edn Vol. 2 Ch. 100 (eds Feldman, M., Friedman, L. S. & Brandt, L. J.) 1697–1712 (Elsevier Saunders, 2016).

  73. Bassotti, G., Battaglia, E. in Colon, Rectum and Anus: Anatomic, Physiologic and Diagnostic Bases for Disease Management (eds Ratto, C., Parrello, A., Dionisi, L. & Litta, F.) 43–53 (Springer, 2017). [Series eds Ratto, C., Parrello, A. & Litta, F. Coloproctology Vol. 1]

  74. Haase, A. M. et al. Pilot study trialling a new ambulatory method for the clinical assessment of regional gastrointestinal transit using multiple electromagnetic capsules. Neurogastroenterol. Motil. 26, 1783–1791 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Mark, E. et al. Ambulatory assessment of colonic motility using the electromagnetic capsule tracking system: effect of opioids. Neurogastroenterol. Motil. 32, e13753 (2019).

    PubMed  Google Scholar 

  76. Cook, I. J., Furukawa, Y., Panagopoulos, V., Collins, P. J. & Dent, J. Relationships between spatial patterns of colonic pressure and individual movements of content. Am. J. Physiol.Gastrointest. Liver Physiol. 278, G329–G341 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Dinning, P. G., Szczesniak, M. M. & Cook, I. J. Proximal colonic propagating pressure waves sequences and their relationship with movements of content in the proximal human colon. Neurogastroenterol. Motil. 20, 512–520 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Corsetti, M. et al. Pan-colonic pressurisations associated with relaxation of the anal sphincter in health and disease: a new colonic motor pattern identified using high-resolution manometry. Am. J. Gastroenterol. 112, 479–489 (2017).

    Article  PubMed  Google Scholar 

  79. Chen, J. H. et al. Characterization of simultaneous pressure waves as biomarkers for colonic motility assessed by high-resolution colonic manometry. Front. Physiol. 9, 1248 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Perez, F., Accarino, A., Azpiroz, F., Quiroga, S. & Malagelada, J. R. Gas distribution within the human gut: effects of meals. Am. J. Gastroenterol. 102, 842–849 (2007).

    Article  PubMed  Google Scholar 

  81. Deller, D. & Wangel, A. G. Intestinal motility in man. I. A study combining the use of intraluminal pressure recording and cineradiography. Gastroenterology 48, 45–57 (1965).

    Article  CAS  PubMed  Google Scholar 

  82. Law, N., Bharucha, A. E., Undale, A. S. & Zinsmeister, A. R. Cholinergic stimulation enhances colonic motor activity, transit, and sensation in humans. Am. J. Physiol. Gastrointest. Liver Physiol 281, G1228–G1237 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Corsetti, M., Gevers, A. M., Caenepeel, P. & Tack, J. The role of tension receptors in colonic mechanosensitivity in humans. Gut 53, 1787–1793 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bampton, P., Dinning, P. G., Kennedy, M. L., Lubowski, D. Z. & Cook, I. J. Prolonged multipoint recording of colonic manometry in the unprepared human colon: providing insight into potentially relevant pressure wave parameters. Am. J. Gastroenterol. 96, 1838–1848 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Rao, S. S., Sadeghi, P., Beaty, J., Kavlock, R. & Ackerson, K. Ambulatory 24-h colonic manometry in healthy humans. Am. J. Physiol. Gastrointest. Liver Physiol 280, G629–G639 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Kumar, D., Williams, N. S., Waldron, D. & Wingate, D. L. Prolonged manometric recording of anorectal motor activity in ambulant human subjects: evidence of periodic activity. Gut 30, 1007–1011 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rao, S. S. & Welcher, K. Periodic rectal motor activity: the intrinsic colonic gatekeeper? Am. J. Gastroenterol. 91, 890–897 (1996).

    CAS  PubMed  Google Scholar 

  88. Prior, A., Fearn, U. J. & Read, N. W. Intermittent rectal motor activity: a rectal motor complex? Gut 32, 1360–1363 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hagger, R., Kumar, D., Benson, M. & Grundy, A. Periodic colonic motor activity identified by 24-h pancolonic ambulatory manometry in humans. Neurogastroenterol. Motil. 14, 271–278 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Pervez, M., Ratcliffe, E., Parsons, S. P., Chen, J. H. & Huizinga, J. D. The cyclic motor patterns in the human colon. Neurogastroenterol. Motil. 32, e13807 (2020).

    Article  PubMed  Google Scholar 

  91. Vather, R. et al. Hyperactive motility responses occur in the distal colon following colonic surgery [abstract 124]. Neurogastroenterol. Motil. 28 (Suppl. 1), 41 (2016).

    Google Scholar 

  92. Patton, V., Wiklendt, L., Arkwright, J. W., Lubowski, D. Z. & Dinning, P. G. The effect of sacral nerve stimulation on distal colonic motility in patients with faecal incontinence. Br. J. Surg. 100, 959–968 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Auli, M. et al. Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro. Br. J. Pharmacol. 155, 1043–1055 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rae, M. G., Fleming, N., McGregor, D. B., Sanders, K. M. & Keef, K. D. Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J. Physiol. 510, 309–320 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Taylor, I., Darby, C. & Hammond, P. Comparison of rectosigmoid myoelectrical activity in the irritable colon syndrome during relapses and remissions. Gut 19, 923–929 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dinning, P. G. et al. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis. Front. Neurosci. 8, 75 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rosli, R. et al. Distinct patterns of myogenic motor activity identified in isolated human distal colon with high‐resolution manometry. Neurogastroenterol. Motil. 8, e13871 (2020).

    Google Scholar 

  98. Lin, A., Dinning, P. G., Milne, T., Bissett, I. P. & O’Grady, G. The “rectosigmoid brake”: review of an emerging neuromodulation target for colorectal functional disorders. Clin. Exp. Pharmacol. Physiol. 44, 719–728 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Ritchie, J. Colonic motor activity and bowel function. Gut 9, 442–456 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Clemens, C. H., Samsom, M., Van Berge Henegouwen, G. P. & Smout, A. J. Abnormalities of left colonic motility in ambulant nonconstipated patients with irritable bowel syndrome. Dig. Dis. Sci. 48, 74–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Cole, S. J. et al. Distal colonic motor activity in four subgroups of patients with irritable bowel syndrome. Dig. Dis. Sci. 47, 345–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Chey, W. Y., Jin, H. O., Lee, M. H., Sun, S. W. & Lee, K. Y. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am. J. Gastroenterol. 96, 1499–1506 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Kern, F. Jr, Almy, T. P., Abbot, F. K. & Bogdonoff, M. D. The motility of the distal colon in nonspecific ulcerative colitis. Gastroenterology 19, 492–503 (1951).

    Article  PubMed  Google Scholar 

  104. Payne, S. C., Furness, J. B. & Stebbing, M. J. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 16, 89–105 (2018).

    Article  Google Scholar 

  105. Jarrett, M. et al. Sacral nerve stimulation for fecal incontinence related to obstetric anal sphincter damage. Dis. Colon. Rectum 51, 531–537 (2008).

    Article  PubMed  Google Scholar 

  106. Melenhorst, J., Koch, S. M., Uludag, O., van Gemert, W. G. & Baeten, C. G. Sacral neuromodulation in patients with faecal incontinence: results of the first 100 permanent implantations. Colorectal Dis. 9, 725–730 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Bampton, P. A. et al. Spatial and temporal organization of pressure patterns throughout the unprepared colon during spontaneous defecation. Am. J. Gastroenterol. 95, 1027–1035 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Dinning, P. A new understanding of the physiology and pathophysiology of colonic motility? Neurogastroenterol. Motil. 30, e13395 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Bajwa, A. & Emmanuel, A. The physiology of continence and evacuation. Best Pract. Res. Clin. Gastroenterol. 23, 477–485 (2009).

    Article  PubMed  Google Scholar 

  110. Ng, K. S., Brookes, S. J., Montes-Adrian, N. A., Mahns, D. A. & Gladman, M. A. Electrophysiological characterization of human rectal afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G1047–G1055 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Knowles, C. H. Human studies of anorectal sensory function. Ir. J. Med. Sci. 187, 1143–1147 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ihre, T. Studies on anal function in continent and incontinent patients. Scand. J. Gastroenterol. Suppl. 25, 1–64 (1974).

    CAS  PubMed  Google Scholar 

  113. Read, N., Timms, J. M., Barfield, L. J., Donnelly, T. C. & Bannister, J. J. Impairment of defecation in young women with severe constipation. Gastroenterology 90, 53–60 (1986).

    Article  CAS  PubMed  Google Scholar 

  114. Sun, W., Read, N. W. & Miner, P. B. Relation between rectal sensation and anal function in normal subjects and patients with faecal incontinence. Gut 31, 1056–1061 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sun, W. M. et al. Sensory and motor responses to rectal distention vary according to rate and pattern of balloon inflation. Gastroenterology 99, 1008–1015 (1990).

    Article  CAS  PubMed  Google Scholar 

  116. Gowers, W. The automatic action of the sphincter ani. Proc. R. Soc. Lond. 26, 77–84 (1877).

    Google Scholar 

  117. Lawson, J. & Nixon, H. H. Anal canal pressures in the diagnosis of Hirschsprung’s disease. J. Pediatric Surg. 2, 544–552 (1967).

    Article  CAS  Google Scholar 

  118. Frenckner, B. Function of the anal sphincters in spinal man. Gut 16, 638–644 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lubowski, D. Z., Nicholls, R. J., Swash, M. & Jordan, M. J. Neural control of internal anal sphincter function. Br. J. Surg. 74, 668–670 (1987).

    Article  CAS  PubMed  Google Scholar 

  120. Remes-Troche, J., De-Ocampo, S., Paulson, J. & Rao, S. S. C. Recto-anal reflexes and sensori-motor response in rectal hyposensitivity. Dis. Colon. Rectum 53, 1047–1054 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Verduron, A. et al. Megarectum. Dig. Dis. Sci. 33, 1164–1174 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Miller, R., Bartolo, D. C., Cervero, F. & Mortensen, N. J. Anorectal sampling: a comparison of normal and incontinent patients. Br. J. Surg. 75, 44–47 (1988).

    Article  CAS  PubMed  Google Scholar 

  123. Cheeney, G., Nguyen, M., Valestin, J. & Rao, S. S. Topographic and manometric characterization of the recto-anal inhibitory reflex. Neurogastroenterol. Motil. 24, e147–e154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Duthie, H. & Bennett, R. C. The relation of sensation in the anal canal to the functional anal sphincter (a possible factor in anal incontinence). Gut 4, 179–182 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rogers, J. Testing for and the role of anal and rectal sensation. Baillieres Clin. Gastroenterol. 6, 179–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  126. Duthie, H. L. & Gairns, F. W. Sensory nerve-endings and sensation in the anal region of man. Br. J. Surg. 47, 585–595 (1960).

    Article  CAS  PubMed  Google Scholar 

  127. Broens, P., Vanbeckevoort, D., Bellon, E. & Penninckx, F. Combined radiologic and manometric study of rectal filling sensation. Dis. Colon. Rectum 45, 1016–1022 (2002).

    Article  PubMed  Google Scholar 

  128. Duthie, H. L. Dynamics of the rectum and anus. Clin. Gastroenterol. 4, 467–477 (1975).

    Article  CAS  PubMed  Google Scholar 

  129. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Gourcerol, G. et al. How sacral nerve stimulation works in patients with faecal incontinence. Colorectal Dis. 13, E203–E211 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Craig, A. D. B. A new view of pain as a homeostatic emotion. Trends Neurosci. 26, 303–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Bittorf, B., Ringler, R., Forster, C., Hohenberger, W. & Matzel, K. F. Cerebral representation of the anorectum using functional magnetic resonance imaging. Br. J. Surg. 93, 1251–1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Moisset, X. et al. Anatomical connections between brain areas activated during rectal distension in healthy volunteers: a visceral pain network. Eur. J. Pain 14, 142–148 (2010).

    Article  PubMed  Google Scholar 

  134. Lynch, A. C., Antony, A., Dobbs, B. R. & Frizelle, F. A. Bowel dysfunction following spinal cord injury. Spinal Cord 39, 193–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339–1368 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Welcome, M. O. Gastrointestinal Physiology: Development, Principles, and Mechanisms of Regulation (Springer, 2018).

  137. Callaghan, B., Furness, J. B. & Pustovit, R. V. Neural pathways for colorectal control, relevance to spinal cord injury and treatment: a narrative review. Spinal Cord 56, 199–205 (2018).

    Article  PubMed  Google Scholar 

  138. Kamm, M. A., van der Sijp, J. R. & Lennard-Jones, J. E. Colorectal and anal motility during defaecation. Lancet 339, 820 (1992).

    Article  CAS  PubMed  Google Scholar 

  139. Bassotti, G. & Gaburri, M. Manometric investigation of high-amplitude propagated contractile activity of the human colon. Am. J. Physiol. Gastrointestinal. Liver Physiol. 255, G660–G664 (1988).

    Article  CAS  Google Scholar 

  140. Halls, J. Bowel content shift during normal defaecation. Proc. R. Soc. Med. 58, 859–860 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lubowski, D., Meagher, A. P., Smart, R. C. & Butler, S. P. Scintigraphic assessment of colonic function during defecation. Int. J. Colorectal Dis. 10, 91–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Mohd, R. et al. Discriminating movements of liquid and gas in the rabbit colon with impedance manometry. Neurogastroenterol. Motil. 30, e13263 (2017).

    Google Scholar 

  143. Dinning, P. G. et al. Temporal relationships between wall motion, intraluminal pressure, and flow in the isolated rabbit small intestine. Am. J. Physiol. Gastrointestinal. Liver Physiol. 300, G577–G585 (2011).

    Article  CAS  Google Scholar 

  144. Bush, M., Petros, P., Swash, M., Fernandez, M. & Gunnemann, A. Defecation 2: Internal anorectal resistance is a critical factor in defecatory disorders. Tech. Coloproctol. 16, 445–450 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. de Loubens, C. et al. Rheology of human faeces and pathophysiology of defaecation. Tech. Coloproctol. 24, 323–329 (2020).

    Article  PubMed  Google Scholar 

  146. Piloni, V., Fioravanti, P., Spazzafumo, L. & Rossi, B. Measurement of the anorectal angle by defecography for the diagnosis of fecal incontinence. Int. J. Colorectal Dis. 14, 131–135 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Tirumanisetty, P. et al. Normal values for assessment of anal sphincter morphology, anorectal motion, and pelvic organ prolapse with MRI in healthy women. Neurogastroenterol. Motil. 30, e13314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Takano, S. & Sands, D. R. Influence of body posture on defecation: a prospective study of “The Thinker” position. Tech. Colproctol. 20, 117–121 (2016).

    Article  CAS  Google Scholar 

  149. Sakakibara, R. et al. Influence of body position on defecation in humans. Low. Urin. Tract. Symptoms 2, 16–21 (2010).

    Article  PubMed  Google Scholar 

  150. Modi, R. M. et al. Implementation of a defecation posture modification device: impact on bowel movement patterns in healthy subjects. J. Clin. Gastroenterol. 53, 216–219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Bannister, J., Davison, P., Timms, J. M., Gibbons, C. & Read, N. W. Effect of stool size and consistency on defecation. Gut 28, 1246–1250 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Petros, P. et al. Defecation 1: testing a hypothesis for pelvic striated muscle action to open the anorectum. Tech. Coloproctol. 16, 437–443 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Barleben, A. & Mills, S. Anorectal anatomy and physiology. Surg. Clin. North Am. 90, 1–15 (2010).

    Article  PubMed  Google Scholar 

  154. Koda, K. et al. Etiology and management of low anterior resection syndrome based on the normal defecation mechanism. Surg. Today 49, 803–808 (2019).

    Article  PubMed  Google Scholar 

  155. Shafik, A. A new concept of the anatomy of the anal sphincter mechanism and the physiology of defecation. III. The longitudinal anal muscle: anatomy and role in anal sphincter mechanism. Investig. Urol. 13, 271–277 (1976).

    CAS  Google Scholar 

  156. Ito, T. et al. Videomanometry of the pelvic organs: a comparison of the normal lower urinary and gastrointestinal tracts. Int. J. Urol. 13, 29–35 (2006).

    Article  PubMed  Google Scholar 

  157. Rao, S. S. Dyssynergic defecation and biofeedback therapy. Gastroenterol. Clin. North Am. 37, 569–586, viii (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ratuapli, S., Bharucha, A. E., Noelting, J., Harvey, D. M. & Zinsmeister, A. R. Phenotypic identification and classification of functional defecatory disorders using high-resolution anorectal manometry. Gastroenterology 144, 314–322 (2013).

    Article  PubMed  Google Scholar 

  159. Grossi, U. et al. Diagnostic accuracy study of anorectal manometry for diagnosis of dyssynergic defecation. Gut 65, 447–455 (2016).

    Article  PubMed  Google Scholar 

  160. Noelting, J. et al. Normal values for high-resolution anorectal manometry in healthy women: effects of age and significance of rectoanal gradient. Am. J. Gastroenterol. 107, 1530–1536 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Caetano, A. C., Santa-Cruz, A. & Rolanda, C. Digital rectal examination and balloon expulsion test in the study of defecatory disorders: are they suitable as screening or excluding tests? Can. J. Gastroenterol. Hepatol. 2016, 8654314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Palit, S. et al. Diagnostic disagreement between tests of evacuatory function: a prospective study of 100 constipated patients. Neurogastroenterol. Motil. 28, 1589–1598 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Pelsang, R. E., Rao, S. S. & Welcher, K. FECOM: a new artificial stool for evaluating defecation. Am. J. Gastroenterol. 94, 183–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Gregersen, H., Krogh, K. & Liao, D. Fecobionics: integrating anorectal function measurements. Clin. Gastroenterol. Hepatol. 16, 981–983 (2018).

    Article  PubMed  Google Scholar 

  165. Sun, D. et al. Fecobionics: a novel bionics device for studying defecation. Ann. Biomed. Eng. 47, 576–589 (2019).

    Article  PubMed  Google Scholar 

  166. Nilsson, M. et al. Quantification and variability in colonic volume with a novel magnetic resonance imaging method. Neurogastroenterol. Motil. 27, 1755–1763 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Bendezu, R. A. et al. Colonic content: effect of diet, meals, and defecation. Neurogastroenterol. Motil. 29, e12930 (2017).

    Article  Google Scholar 

  168. Deloose, E., Janssen, P., Depoorte, I. & Tack, J. The migrating motor complex: control mechanisms and its role in health and disease. Nat. Rev. Gastroenterol. Hepatol. 9, 271–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Connell, A. M., Hilton, C., Irvine, G., Lennard-Jones, J. E. & Misiewicz, J. J. Variation of bowel habit in two population samples. Br. Med. J. 2, 1095–1099 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bellini, M. et al. Self-perceived normality in defecation habits. Dig. Liver Dis. 38, 103–108 (2006).

    CAS  PubMed  Google Scholar 

  171. Mitsuhashi, S. et al. Characterizing normal bowel frequency and consistency in a representative sample of adults in the United States (NHANES). Am. J. Gastroenterol. 113, 115–123 (2018).

    Article  PubMed  Google Scholar 

  172. Walter, S. A., Kjellstrom, L., Nyhlin, H., Talley, N. J. & Agreus, L. Assessment of normal bowel habits in the general adult population: the Popcol study. Scand. J. Gastroenterol. 45, 556–566 (2010).

    Article  PubMed  Google Scholar 

  173. Panigrahi, M. K., Kar, S. K., Singh, S. P. & Ghoshal, U. C. Defecation frequency and stool form in a coastal eastern Indian population. J. Neurogastroenterol. Motil. 19, 374–380 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Adibi, P., Behzad, E., Pirzadeh, S. & Mohseni, M. Bowel habit reference values and abnormalities in young Iranian healthy adults. Dig. Dis. Sci. 52, 1810–1813 (2007).

    Article  PubMed  Google Scholar 

  175. Fang, X., Lu, S. & Pan, G. An epidemiologic study of bowel habit in adult non-patient population in Beijing area. Zhonghua Yi Xue Za Zhi 81, 1287–1290 (2001).

    CAS  PubMed  Google Scholar 

  176. Heaton, K. W. et al. Defecation frequency and timing, and stool form in the general population: a prospective study. Gut 33, 818–824 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sandler, R. & Drossman, D. A. Bowel habits in young adults not seeking health care. Dig. Dis. Sci. 32, 841–845 (1987).

    Article  CAS  PubMed  Google Scholar 

  178. Drossman, D., Sandler, R. S., McKee, D. C. & Lovitz, A. J. Bowel patterns among subjects not seeking health care. Use of a questionnaire to identify a population with bowel dysfunction. Gastroenterology 83, 529–534 (1982).

    Article  CAS  PubMed  Google Scholar 

  179. Chen, L., Ho, K. Y. & Phua, K. H. Normal bowel habits and prevalence of functional bowel disorders in Singaporean adults — findings from a community based study in Bishan. Singap. Med. J. 41, 255–258 (2000).

    CAS  Google Scholar 

  180. Weaver, L. T., Ewing, G. & Taylor, L. C. The bowel habit of milk-fed infants. J. Pediatr. Gastroenterol. Nutr. 7, 568–571 (1988).

    Article  CAS  PubMed  Google Scholar 

  181. Steer, C. D., Emond, A. M., Golding, J. & Sandhu, B. The variation in stool patterns from 1 to 42 months: a population-based observational study. Arch. Dis. Child. 94, 231–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Pavlov, I. P. The Work of the Digestive Glands (Griffin, 1902).

  183. Almy, T. P. Experimental studies on the irritable colon. Am. J. Med. 10, 60–67 (1951).

    Article  CAS  PubMed  Google Scholar 

  184. Welgan, P., Meshkinpour, H. & Beeler, M. Effect of anger on colon motor and myoelectric activity in irritable bowel syndrome. Gastroenterology 94, 1150–1156 (1988).

    Article  CAS  PubMed  Google Scholar 

  185. Welgan, P., Meshkinpour, H. & Hoehler, F. The effect of stress on colon motor and electrical activity in irritable bowel syndrome. Psychosom. Med. 47, 139–149 (1985).

    Article  CAS  PubMed  Google Scholar 

  186. Rao, S. S., Hatfield, R. A., Suls, J. M. & Chamberlain, M. J. Psychological and physical stress induce differential effects on human colonic motility. Am. J. Gastroenterol. 93, 985–990 (1998).

    Article  CAS  PubMed  Google Scholar 

  187. Kano, M. et al. Altered brain and gut responses to corticotropin-releasing hormone (CRH) in patients with irritable bowel syndrome. Sci. Rep. 29, 12425 (2017).

    Article  CAS  Google Scholar 

  188. Drossman, D. A. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology 150, 1262–1279 (2016).

    Article  Google Scholar 

  189. Drossman, D. in Sleisenger and Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology/Diagnosis/Management 10th edn Ch. 22 (eds Feldman, M., Friedman, L. S. & Brandt, L. J.) 349–362 (Elsevier Saunders, 2016).

  190. Mayer, E. A. & Tillisch, K. The brain–gut axis in abdominal pain syndromes. Annu. Rev. Med. 62, 381–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Clevers, E., Lutin, E., Cornelis, J. & Van Oudenhove, L. Gastrointestinal symptoms in office workers are predicted by psychological distress and short sleep duration. J. Psychosom. Res. 138, 110230 (2020).

    Article  PubMed  Google Scholar 

  192. Mazurak, N., Seredyuk, N., Sauer, H., Teufel, M. & Enck, P. Heart rate variability in the irritable bowel syndrome: a review of the literature. Neurogastroenterol. Motil. 24, 206–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Koloski, N. et al. The brain–gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut 61, 1284–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Carabotti, M., Scirocco, A., Maselli, M. A. & Severi, C. The gut – brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28, 203–209 (2015).

    PubMed  PubMed Central  Google Scholar 

  195. Powell, N., Walker, M. M. & Talley, N. J. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat. Rev. Gastroenterol. Hepatol. 14, 143–159 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Holtmann, G., Shah, A. & Morrison, M. Pathophysiology of functional gastrointestinal disorders: a holistic overview. Dig. Dis. 35, 5–13 (2017).

    Article  PubMed  Google Scholar 

  197. Kaerts, N., Van Hal, G., Vermandel, A. & Wyndaele, J. J. Readiness signs used to define the proper moment to start toilet training: a review of the literature. Neurourol. Urodyn. 31, 437–440 (2012).

    Article  PubMed  Google Scholar 

  198. Michel, R. S. Toilet training. Pediatr. Rev. 20, 240–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. Mugie, S. M., Di Lorenzo, C. & Benninga, M. A. Constipation in childhood. Nat. Rev. Gastroenterol. Hepatol. 8, 502–511 (2011).

    Article  PubMed  Google Scholar 

  200. Solzi, G. & Di Lorenzo, C. Are constipated children different from constipated adults. Dig. Dis. 17, 308–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  201. Di Lorenzo, C. & Benninga, M. A. Pathophysiology of pediatric fecal incontinence. Gastroenterology 126, S33–S40 (2004).

    Article  PubMed  Google Scholar 

  202. Skardoon, G. R., Khera, A. J., Emmanuel, A. V. & Burgell, R. E. Review article: dyssynergic defaecation and biofeedback therapy in the pathophysiology and management of functional constipation. Aliment. Pharmacol. Ther. 46, 410–423 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Bharucha, A. & Lacy, B. E. Mechanisms, evaluation, and management of chronic constipation. Gastroenterology 158, 1232–1249 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Narayanan, S. & Bharucha, A. E. A practical guide to biofeedback therapy for pelvic floor disorders. Curr. Gastroenterol. Rep. 21, 21 (2019).

    Article  PubMed  Google Scholar 

  205. Rao, S. S., Kavlock, R. & Rao, S. Influence of body position and stool characteristics on defecation in humans. Am. J. Gastroenterol. 101, 2790–2796 (2006).

    Article  PubMed  Google Scholar 

  206. Sikirov, D. Comparison of straining during defecation in three positions: results and implications for human health. Dig. Dis. Sci. 48, 1201–1205 (2003).

    Article  PubMed  Google Scholar 

  207. Takano, S., Nakashima, M., Tsuchino, M., Nakao, Y. & Watanabe, A. Influence of foot stool on defecation: a prospective study. Pelviperineology 37, 101–103 (2018).

    Google Scholar 

  208. Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Env. Sci. Technol. 45, 1827–1879 (2015).

    Article  CAS  Google Scholar 

  209. Stephen, A. M. & Cummings, J. H. The microbial contribution to human faecal mass. J. Med. Microbiol. 13, 45–56 (1980).

    Article  CAS  PubMed  Google Scholar 

  210. Wierdsma, N. et al. Malabsorption and nutritional balance in the ICU: fecal weight as a biomarker: a prospective observational pilot study. Crit. Care 15, R264 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Watten, R. H., Morgan, F. M., Yachai Na, S., Vanikiati, B. & Phillips, R. A. Water and electrolyte studies in cholera. J. Clin. Invest. 38, 1879–1889 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lewis, S. & Heaton, K. W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 (1997).

    Article  CAS  PubMed  Google Scholar 

  213. Blake, M. R., Raker, J. M. & Whelan, K. Validity and reliability of the Bristol Stool Form Scale in healthy adults and patients with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 44, 693–703 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Degen, L. P. & Phillips, S. F. How well does stool form reflect colonic transit? Gut 39, 109–113 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Jarunvongvanich, V., Patcharatrakul, T. & Gonlachanvit, S. Prediction of delayed colonic transit using Bristol stool form and stool frequency in Eastern constipated patients: a difference from the West. J. Neurogastroenterol. Motil. 23, 561–568 (2017).

    Article  Google Scholar 

  216. Saad, R. et al. Do stool form and frequency correlate with whole-gut and colonic transit? Results from a multicenter study in constipated individuals and healthy controls. Am. J. Gastroenterol. 105, 403–411 (2010).

    Article  PubMed  Google Scholar 

  217. Tunc, V. T., Camurdan, A. D., Ilhan, M. N., Sahin, F. & Beyazova, U. Factors associated with defecation patterns in 0–24-month-old children. Eur. J. Pediatr. 167, 1357–1362 (2008).

    Article  PubMed  Google Scholar 

  218. Bekkali, N., Hamers, S. L., Reitsma, J. B., Van Toledo, L. & Benninga, M. A. Infant stool form scale: development and results. J. Pediatr. 154, 521–526.e1 (2009).

    Article  PubMed  Google Scholar 

  219. Russo, M. et al. Stool consistency, but not frequency, correlates with total gastrointestinal transit time in children. J. Pediatr. 162, 1188–1192 (2013).

    Article  PubMed  Google Scholar 

  220. Roager, H. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Kashyap, P. et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastoenterology 144, 967–977 (2013).

    Article  Google Scholar 

  223. Simren, M. et al. Intestinal microbiota in functional bowel disorders: a Rome Foundation report. Gut 62, 159–176 (2013).

    Article  PubMed  Google Scholar 

  224. Lewis, S. & Heaton, K. W. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut 41, 245–251 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tottey, W. et al. Colonic transit time is a driven force of the gut microbiota composition and metabolism: in vitro evidence. J. Neurogastroenterol. Motil. 23, 124–134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Wolf, P. et al. Assessing the colonic microbiome, hydrogenogenic and hydrogenotrophic genes, transit and breath methane in constipation. Neurogastroenterol. Motil. 29, 1–9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Lee, K., Paik, C. N., Chung, W. C., Yang, J. M. & Choi, M. G. Breath methane positivity is more common and higher in patients with objectively proven delayed transit constipation. Eur. J. Gastroenterol. Hepatol. 25, 726–732 (2013).

    Article  PubMed  Google Scholar 

  228. Parthasarathy, G. et al. Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation. Gastoenterology 150, 367–379 (2016).

    Article  Google Scholar 

  229. Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome — a systematic review. Gastroenterology 157, 97–108 (2019).

    Article  PubMed  Google Scholar 

  230. Ghouri, Y. et al. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin. Exp. Gastroenterol. 7, 473–587 (2014).

    PubMed  PubMed Central  Google Scholar 

  231. Singh, S., Stroud, A. M., Holubar, S. D., Sandborn, W. J. & Pardi, D. S. Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis. Cochrane Database Syst. Rev. 11, CD001176 (2015).

    Google Scholar 

  232. Ford, A. et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am. J. Gastroenterol. 109, 1547–1561 (2014).

    Article  PubMed  Google Scholar 

  233. Menees, S., Maneerattannaporn, M., Kim, H. M. & Chey, W. D. The efficacy and safety of rifamixin for the irritable bowel syndrome: a systematic review and meta-analysis. Am. J. Gastroenterol. 107, 28–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  234. Lembo, A. et al. Repeat treatment with rifamixin is safe and effective in patients with diarrhea-predominant irritable bowel syndrome. Gastroenterology 151, 1113–1121 (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Dimidi, E., Christodoulides, S., Fragkos, K. C., Scott, S. M. & Whelan, K. The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 100, 1075–1084 (2014).

    Article  CAS  PubMed  Google Scholar 

  236. Christodoulides, S. et al. Systematic review with meta-analysis: effect of fibre supplementation on chronic idiopathic constipation in adults. Aliment. Pharmacol. Ther. 44, 103–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Allen, S., Martinez, E. G., Gregorio, G. V. & Dans, L. F. Probiotics for treating acute infectious diarrhea. Cochrane Database Syst. Rev. 11, CD003048 (2010).

    Google Scholar 

  238. McFarland, L. Meta-analysis for probiotics for the prevention of traveler’s diarrhea. Travel. Med. Infect. Dis. 5, 97–105 (2007).

    Article  PubMed  Google Scholar 

  239. Bassotti, G., Bucaneve, G., Betti, C. & Morelli, A. Sudden awakening from sleep: effects on proximal and distal colonic contractile activity in man. Eur. J. Gastroenterol. Hepatol. 2, 475–478 (1990).

    Google Scholar 

  240. Furukawa, Y. et al. Relationship between sleep patterns and human colonic motor patterns. Gastroenterology 107, 1372–1381 (1994).

    Article  CAS  PubMed  Google Scholar 

  241. Narducci, F., Bassotti, G., Gaburri, M. & Morelli, A. Twenty four hour manometric recording of colonic motor activity in healthy man. Gut 28, 17–25 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Barclay, A. Note on the movements of the large intestine. Arch. Roentgen Ray 16, 422–424 (1912).

    Article  Google Scholar 

  243. Hertz, A. & Newton, A. The normal movements of the colon in man. J. Physiol. 47, 57–65 (1913).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ducrotte, P., Denis, P., Bellagha, K. & Riachi, G. Motor response of the digestive tract to food. Gastroenterol. Clin. Biol. 18, 157–164 (1994).

    CAS  PubMed  Google Scholar 

  245. Rogers, J., Raimundo, A. H. & Misiewicz, J. J. Cephalic phase of colonic pressure response to food. Gut 34, 537–543 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Holdstock, D. & Misiewicz, J. J. Factors controlling colonic motility: colonic pressures and transit after meals in patients with total gastrectomy, pernicious anaemia or duodenal ulcer. Gut 11, 100–110 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Snape, W. J. Jr, Matarazzo, S. A. & Cohen, S. Effect of eating and gastrointestinal hormones on human colonic myoelectrical and motor activity. Gastroenterology 75, 373–378 (1978).

    Article  CAS  PubMed  Google Scholar 

  248. Rao, S. S., Kavelock, R., Beaty, J., Ackerson, K. & Stumbo, P. Effects of fat and carbohydrate meals on colonic motor response. Gut 46, 205–211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Di Stefano, M., Miceli, E., Missanelli, A., Mazzocchi, S. & Corazza, G. R. Meal induced rectosigmoid tone modification: a low caloric meal accurately separates functional and organic gastrointestinal disease patients. Gut 55, 1409–1414 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Aaronson, M. J., Freed, M. M. & Burakoff, R. Colonic myoelectric activity in persons with spinal cord injury. Dig. Dis. Sci. 30, 295–300 (1985).

    Article  CAS  PubMed  Google Scholar 

  251. Snape, W. J. Jr, Wright, S. H., Battle, W. M. & Cohen, S. The gastrocolic response: evidence for a neural mechanism. Gastroenterology 77, 1235–1240 (1979).

    Article  PubMed  Google Scholar 

  252. Bassotti, G., Clementi, M., Antonelli, E., Pelli, M. A. & Tonini, M. Low-amplitude propagated contractile waves: a relevant propulsive mechanism of human colon. Dig. Liver Dis. 33, 36–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  253. Herbst, F. et al. Gastrointestinal transit and prolonged ambulatory colonic motility in health and faecal incontinence. Gut 41, 381–389 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Dominianni, C. et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE 10, e0124599 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Stephen, A. & Cummings, J. H. Mechanism of action of dietary fibre in the human colon. Nature 284, 283–284 (1980).

    Article  CAS  PubMed  Google Scholar 

  256. Gill, S., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2020).

    Article  PubMed  CAS  Google Scholar 

  257. Stephen, A., Wiggins, H. S. & Cummings, J. S. Effect of changing transit time on colonic microbial metabolism in man. Gut 28, 601–609 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Gibson, G. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–500 (2019).

    Article  Google Scholar 

  259. Shen, D. et al. Positive effects of resistant starch supplementation on bowel function in healthy adults: a systematic review and meta-analysis of randomized controlled trials. Int. J. Food Sci. Nutr. 68, 149–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Wilkinson-Smith, V. et al. Mechanisms underlying effects of kiwifruit on intestinal function shown by MRI in healthy volunteers. Aliment. Pharmacol. Ther. 49, 759–768 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Murray, K. et al. Differential effects of FODMAPs (fermentable oligo-, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. Am. J. Gastroenterol. 109, 110–119 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. de Vries, J., Birkett, A., Hulshof, T., Verbeke, K. & Gibes, K. Effects of cereal, fruit and vegetable fibers on human fecal weight and transit time: a comprehensive review of intervention trials. Nutrients 8, 130 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Cummings, J. in CRC Handbook on Dietary Fiber in Nutrition (ed. Spiller, G. S.) 263–349 (CRC Press, 1993).

  264. de Vries, J., Miller, P. E. & Verbeke, K. Effects of cereal fiber on bowel function: a systematic review of intervention trials. World J. Gastroenterol. 21, 8952–8963 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Talley, N., Jones, M., Nuyts, G. & Dubois, D. Risk factors for chronic constipation based on a general practice sample. Am. J. Gastroenterol. 98, 1107–1111 (2003).

    Article  PubMed  Google Scholar 

  266. Chiarelli, P., Brown, W. & McElduff, P. Constipation in Australian women: prevalence and associated factors. Int. Urogynecol. J. Pelvic Floor. Dysfunct. 11, 71–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  267. Suares, N. & Ford, A. C. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and meta-analysis. Am. J. Gastroenterol. 106, 1582–1591 (2011).

    Article  PubMed  Google Scholar 

  268. Johanson, J. & Sonnenberg, A. The prevalence of hemorrhoids and chronic constipation an epidemiologic study. Gastroenterology 98, 360–363 (1990).

    Article  Google Scholar 

  269. Sandler, R., Jordan, M. C. & Shelton, B. J. Demographic and dietary determinants of constipation in the US population. Am. J. Public Health 80, 185–189 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Palsson, O., Whitehead, W., Törnblom, H., Sperber, A. D. & Simren, M. Prevalence of Rome IV functional bowel disorders among adults in the United States, Canada, and the United Kingdom. Gastroenterology 158, 1262–1273 (2020).

    Article  PubMed  Google Scholar 

  271. Madsen, J. L. & Graff, J. Effects of ageing on gastrointestinal motor function. Age Ageing 33, 154–159 (2004).

    Article  PubMed  Google Scholar 

  272. Graff, J., Brinch, K. & Madsen, J. L. Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin. Physiol. 21, 253–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  273. Broad, J. et al. Changes in neuromuscular structure and functions of human colon during ageing are region-dependent. Gut 68, 1210–1223 (2019).

    Article  CAS  PubMed  Google Scholar 

  274. Kim, S. Colonic slow transit can cause changes in the gut environment observed in the elderly. J. Neurogastroenterol. Motil. 23, 3–4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Mugie, S., Benninga, M. A. & Di Lorenzo, C. Epidemiology of constipation in children and adults: a systematic review. Best Pract. Res. Clin. Gastroenterol. 25, 3–18 (2011).

    Article  PubMed  Google Scholar 

  276. Metcalf, A. et al. Simplified assessment of segmental colonic transit. Gastroenterology 92, 40–47 (1987).

    Article  CAS  PubMed  Google Scholar 

  277. Sadik, R., Abrahamsson, H. & Stotzer, P. O. Gender differences in gut transit shown with a newly developed radiological procedure. Scand. J. Gastroenterol. 38, 36–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  278. Abrahamsson, H., Antov, S. & Bosaeus, I. Gastrointestinal and colonic segmental transit time evaluated by a single abdominal X-ray in healthy subjects and constipated patients. Scand. J. Gastroenterol. Suppl. 152, 72–80 (1988).

    Article  CAS  PubMed  Google Scholar 

  279. Meier, R. et al. Influence of age, gender, hormonal status and smoking habits on colonic transit time. Neurogastroenterol. Motil. 7, 235–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  280. Degen, L. P. & Phillips, S. F. Variability of gastrointestinal transit in healthy women and men. Gut 39, 299–305 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Zutshi, M., Hull, T. L., Bast, J. & Hammel, J. Female bowel function: the real story. Dis. Colon. Rectum 50, 351–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  282. Heitkemper, M. & Chang, L. Do fluctuations in ovarian hormones affect gastrointestinal symptoms in women with irritable bowel syndrome? Gend. Med. 6, 152–167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Gonenne, J. et al. Effect of female sex hormone supplementation and withdrawal on gastrointestinal and colonic transit in postmenopausal women. Neurogastroenterol. Motil. 18, 911–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  284. Wald, A. et al. Gastrointestinal transit: the effect of the menstrual cycle. Gastroenterology 80, 1497–1500 (1981).

    Article  CAS  PubMed  Google Scholar 

  285. Jung, H. K., Kim, D. Y. & Moon, I. H. Effects of gender and menstrual cycle on colonic transit time in healthy subjects. Korean J. Intern. Med. 18, 181–186 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Townsend, D. et al. Pathophysiology of fecal incontinence differs between men and women: a case-matched study in 200 patients. Neurogastroenterol. Motil. 28, 1580–1588 (2016).

    Article  CAS  PubMed  Google Scholar 

  287. Jameson, J. et al. Effect of age, sex and parity on anorectal function. Br. J. Surg. 81, 1689–1692 (1994).

    Article  CAS  PubMed  Google Scholar 

  288. Abramowitz, L. et al. Are sphincter defects the cause of anal incontinence after vaginal delivery? Dis. Colon. Rectum 43, 590–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  289. Rieger, N., Schloithe, A. C., Saccone, G. & Wattchow, D. A prospective study of anal sphincter injury due to childbirth. Scand. J. Gastroenterol. 33, 950–955 (1998).

    Article  CAS  PubMed  Google Scholar 

  290. Bharucha, A. E., Fletcher, J. G., Melton, L. J. 3rd & Zinsmeister, A. R. Obstetric trauma, pelvic floor injury and fecal incontinence: a population-based case-control study. Am. J. Gastroenterol. 107, 902–911 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Oberwalder, M., Connor, J. & Wexner, S. D. Meta-analysis to determine the incidence of obstetric anal sphincter damage. Br. J. Surg. 90, 1333–1337 (2003).

    Article  CAS  PubMed  Google Scholar 

  292. Bharucha, A. E. et al. Prevalence and burden of fecal incontinence: a population-based study in women. Gastroenterology 129, 42–49 (2005).

    Article  PubMed  Google Scholar 

  293. Larsson, C. et al. Anal incontinence after caesarean and vaginal delivery in Sweden: a national population-based study. Lancet 393, 1233–1239 (2019).

    Article  PubMed  Google Scholar 

  294. Lunniss, P. J., Gladman, M. A., Hetzer, F. H., Williams, N. S. & Scott, S. M. Risk factors in acquired faecal incontinence. J. R. Soc. Med. 97, 111–116 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Boyle, D. J. et al. The effects of age and childbirth on anal sphincter function and morphology in 999 symptomatic female patients with colorectal dysfunction. Dis. Colon. Rectum 55, 286–293 (2012).

    Article  CAS  PubMed  Google Scholar 

  296. Heitmann, P. T. et al. Relationships between the results of anorectal investigations and symptom severity in patients with faecal incontinence. Int. J. Colorectal Dis. 34, 1445–1454 (2019).

    Article  CAS  PubMed  Google Scholar 

  297. Heitmann, P. et al. The relationships between the results of contemporary tests of anorectal structure and sensorimotor function and the severity of faecal incontinence. Neurogastroenterol. Motil. 32, e13946 (2020).

    Article  PubMed  Google Scholar 

  298. Delgado-Aros, S., Camilleri, M., Garcia, M. A., Burton, D. & Busciglio, I. High body mass alters colonic sensory-motor function and transit in humans. Am. J. Physiol. Gastrointestinal. Liver Physiol. 295, G382–G388 (2008).

    Article  CAS  Google Scholar 

  299. Aro, P. et al. Body mass index and chronic unexplained gastrointestinal symptoms: an adult endoscopic population based study. Gut 54, 1377–1383 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Bharucha, A. E., Zinsmeister, A. R., Schleck, C. D. & Melton, L. J. Bowel disturbances are the most important risk factors for late onset fecal incontinence: a population-based case-control study in women. Gastroenterology 139, 1559–1566 (2010).

    Article  PubMed  Google Scholar 

  301. Manchikanti, L. et al. Opioid epidemic in the United States. Pain Physician 15, ES9–ES38 (2012).

    Article  PubMed  Google Scholar 

  302. Kalso, E., Edwards, J. E., Moore, R. A. & McQuay, H. J. Opioids in chronic non-cancer pain: systematic review of efficacy and safety. Pain 112, 372–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  303. Bell, T. J. et al. The prevalence, severity, and impact of opioid-induced bowel dysfunction: results of a US and European Patient Survey (PROBE 1). Pain Med. 10, 35–42 (2009).

    Article  PubMed  Google Scholar 

  304. Vollebregt, P. et al. Association between opioid usage and rectal dysfunction in constipation: a cross-sectional study of 2754 patients. Neurogastroenterol. Motil. 32, e13839 (2020).

    Article  CAS  PubMed  Google Scholar 

  305. Iovino, P. et al. New onset of constipation during long-term physical inactivity: a proof-of-concept study on the immobility-induced bowel changes. PLoS ONE 8, e72608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Strid, H., Simrén, M., Störsrud, S., Stotzer, P. O. & Sadik, R. Effect of heavy exercise on gastrointestinal transit in endurance athletes. Scand. J. Gastroenterol. 46, 673–677 (2011).

    Article  PubMed  Google Scholar 

  307. Lacy, B. et al. Bowel disorders. Gastoenterology 150, 1393–1407 (2016).

    Article  Google Scholar 

  308. Rao, S. S. et al. Functional anorectal disorders. Gastroenterology 130, 1510–1518 (2016).

    Google Scholar 

  309. Rey, E., Balboa, A. & Mearin, F. Chronic constipation, irritable bowel syndrome with constipation and constipation with pain/discomfort: similarities and differences. Am. J. Gastroenterol. 109, 876–884 (2014).

    Article  PubMed  Google Scholar 

  310. Shekhar, C. et al. Rome III functional constipation and irritable bowel syndrome with constipation are similar disorders within a spectrum of sensitization, regulated by serotonin. Gastroenterology 145, 749–757 (2013).

    Article  CAS  PubMed  Google Scholar 

  311. Wong, R. et al. Inability of the Rome III criteria to distinguish functional constipation from constipation-subtype irritable bowel syndrome. Am. J. Gastroenterol. 105, 2228–2234 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Whitehead, W., Palsson, O. S. & Simren, M. Biomarkers to distinguish functional constipation from irritable bowel syndrome with constipation. Neurogastroenterol. Motil. 28, 783–792 (2016).

    Article  CAS  PubMed  Google Scholar 

  313. Bharucha, A. et al. Differences between painless and painful constipation among community women. Am. J. Gastroenterol. 101, 604–612 (2006).

    Article  PubMed  Google Scholar 

  314. Ford, A. et al. Characteristics of functional bowel disorder patients: a cross-sectional survey using the Rome III criteria. Aliment. Pharmacol. Ther. 39, 312–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  315. Palsson, O., Baggish, J. S., Turner, M. J. & Whitehead, W. E. IBS patients show frequent fluctuations between loose/watery and hard/lumpy stools: implications for treatment. Am. J. Gastroenterol. 107, 286–295 (2012).

    Article  PubMed  Google Scholar 

  316. Dinning, P., Carrington, E. V. & Scott, S. M. The use of colonic and anorectal high-resolution manometry and its place in clinical work and in research. Neurogastroenterol. Motil. 27, 1693–1708 (2015).

    Article  CAS  PubMed  Google Scholar 

  317. Brochard, C. et al. Quality of life in 1870 patients with constipation and/or fecal incontinence: constipation should not be underestimated. Clin. Res. Hepatol. Gastroenterol. 43, 682–687 (2019).

    Article  PubMed  Google Scholar 

  318. Cohen, M. et al. Evaluation of interstitial cells of Cajal in patients with severe colonic inertia requiring surgery: a clinical-pathological study. Colorectal Dis. 19, 462–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  319. Lee, J., Park, H., Kamm, M. A. & Talbot, I. C. Decreased density of interstitial cells of Cajal and neuronal cells in patients with slow-transit constipation and acquired megacolon. J. Gastroenterol. Hepatol. 20, 1292–1298 (2005).

    Article  PubMed  Google Scholar 

  320. Dinning, P. G. et al. Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of colonic propagating pressure waves in severe constipation. Neurogastroenterol. Motil. 22, e340–e349 (2010).

    Article  CAS  PubMed  Google Scholar 

  321. Dinning, P. et al. High-resolution colonic motility recordings in vivo compared with ex vivo recordings after colectomy, in patients with slow transit constipation. Neurogastroenterol. Motil. 28, 1824–1835 (2016).

    Article  CAS  PubMed  Google Scholar 

  322. Camilleri, M. et al. Chronic constipation. Nat. Rev. Dis. Primers 3, 17095 (2017).

    Article  PubMed  Google Scholar 

  323. Bassotti, G. et al. Colonic neuropathological aspects in patients with intractable constipation due to obstructed defecation. Mod. Pathol. 20, 367–374 (2007).

    Article  PubMed  Google Scholar 

  324. Bassotti, G. & Villanacci, V. Can “functional” constipation be considered as a form of enteric neuro-gliopathy? Glia 59, 345–350 (2010).

    Article  PubMed  Google Scholar 

  325. Bassotti, G., Villanacci, V., Creţoiu, D., Creţoiu, S. M. & Becheanu, G. Cellular and molecular basis of chronic constipation: taking the functional/idiopathic label out. World J. Gastroenterol. 19, 4099–4105 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  326. Bazzocchi, G. et al. Effect of eating on colonic motility and transit in patients with functional diarrhea. Simultaneous scintigraphic and manometric evaluations. Gastroenterology 101, 1298–1306 (1991).

    Article  CAS  PubMed  Google Scholar 

  327. Tack, J. Functional diarrhea. Gastroenterol. Clin. North Am. 41, 629–637 (2012).

    Article  PubMed  Google Scholar 

  328. Simrén, M. et al. Visceral hypersensitivity is associated with GI symptom severity in functional GI disorders: consistent findings from five different patient cohorts. Gut 67, 255–262 (2018).

    Article  PubMed  Google Scholar 

  329. Hong, J. et al. Altered brain responses in subjects with irritable bowel syndrome during cued and uncued pain expectation. Neurogastroenterol. Motil. 28, 127–138 (2016).

    Article  PubMed  Google Scholar 

  330. Koloski, N., Jones, M. P. & Talley, N. J. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study. Aliment. Pharmacol. Ther. 44, 592–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  331. Wang, L. et al. Gut microbial dysbiosis in the irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. J. Acad. Nutr. Dietetics 120, 565–586 (2020).

    Article  Google Scholar 

  332. Jalanka, J., Salonen, A., Fuentes, S. & de Vos, W. M. Microbial signatures in post-infectious irritable bowel syndrome — toward patient stratification for improved diagnostics and treatment. Gut Microbes 6, 364–369 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  333. Shulman, R., Jarrett, M. E., Cain, K. C., Broussard, E. K. & Heitkemper, M. M. Associations among gut permeability, inflammatory markers, and symptoms in patients with irritable bowel syndrome. J. Gastroenterol. 49, 1467–1476 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Camilleri, M., Madsen, K., Spiller, R., Greenwood-Van Meerveld, B. & Verne, G. N. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil. 24, 503–512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Camilleri, M. Peripheral mechanisms in irritable bowel syndrome. N. Engl. J. Med. 367, 1626–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  336. Ford, A. & Talley, N. J. Mucosal inflammation as a potential etiological factor in irritable bowel syndrome: a systematic review. J. Gastroenterol. Hepatol. 46, 421–431 (2011).

    Google Scholar 

  337. Elli, L. et al. Evidence for the presence of non-celiac gluten sensitivity in patients with functional gastrointestinal symptoms: results from a multicenter randomized double-blind placebo-controlled gluten challenge. Nutrients 8, 84 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  338. Beyder, A. et al. Loss-of-function of the voltage-gated sodium channel NaV1.5 (channelopathies) in patients with irritable bowel syndrome. Gastroenterology 146, 1659–1668 (2014).

    Article  CAS  PubMed  Google Scholar 

  339. Valentin, N. et al. Biomarkers for bile acid diarrhea in functional bowel disorder with diarrhea: a systematic review and meta-analysis. Gut 65, 1951–1959 (2015).

    Article  PubMed  CAS  Google Scholar 

  340. Shin, A. et al. Bowel functions, fecal unconjugated primary and secondary bile acids, and colonic transit in patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 11, 1270–1275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Muñoz-Yagüe, T. et al. Fecal incontinence in men: causes and clinical and manometric features. World J. Gastroenterol. 20, 7933–7940 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Bharucha, A. E. et al. Relationship between symptoms and disordered continence mechanisms in women with idiopathic faecal incontinence. Gut 54, 546–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Dietz, H. Pelvic organ prolapse — a review. Aust. Fam. Physician 44, 446–452 (2015).

    PubMed  Google Scholar 

  344. Kiff, E. S. & Swash, M. Slowed conduction in the pudendal nerves in idiopathic (neurogenic) faecal incontinence. Br. J. Surg. 71, 614–616 (1984).

    Article  CAS  PubMed  Google Scholar 

  345. Kiff, E., Barnes, P. R. & Swash, M. Evidence of pudendal neuropathy in patients with perineal descent and chronic straining at stool. Gut 25, 1279–1282 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Swash, M., Snooks, S. J. & Henry, M. M. Unifying concept of pelvic floor disorders and incontinence. J. R. Soc. Med. 78, 906–911 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Gosselink, M. P. & Joshi, H. M. Exploring the link between high grade internal rectal prolapse and faecal incontinence. Colorectal Dis. 19, 711–712 (2017).

    Article  PubMed  Google Scholar 

  348. Hawkins, A. T. et al. Impact of rising grades of internal rectal intussusception on fecal continence and symptoms of constipation. Dis. Colon. Rectum 59, 54–61 (2016).

    Article  PubMed  Google Scholar 

  349. Chan, C., Lunniss, P. J., Wang, D., Williams, N. S. & Scott, S. M. Rectal sensorimotor dysfunction in patients with urge faecal incontinence: evidence from prolonged manometric studies. Gut 54, 1263–1272 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Gladman, M. A., Lunniss, P. J., Scott, S. M. & Swash, M. Rectal hyposensitivity. Am. J. Gastroenterol. 101, 1140–1151 (2006).

    Article  PubMed  Google Scholar 

  351. Scott, S. & Lunniss, P. J. Rectal hyposensitivity and functional hindgut disorders: cause and effect or an epiphenomenon? J. Pediatr. Gastroenterol. Nutr. 53 (Suppl. 2), 47–49 (2011).

    Google Scholar 

  352. Chan, C., Scott, S. M., Williams, N. S. & Lunniss, P. J. Rectal hypersensitivity worsens stool frequency, urgency, and lifestyle in patients with urge fecal incontinence. Dis. Colon. Rectum 48, 134–140 (2005).

    Article  PubMed  Google Scholar 

  353. Aitchison, M. et al. Impaired anal sensation and early diabetic faecal incontinence. Diabet. Med. 8, 960–963 (1991).

    Article  CAS  PubMed  Google Scholar 

  354. Mundet, L. et al. Defective conduction of anorectal afferents is a very prevalent pathophysiological factor associated to fecal incontinence in women. J. Neurogastroenterol. Motil. 25, 423–435 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  355. Bharucha, A. E. et al. Epidemiology, pathophysiology, and classification of fecal incontinence: state of the science summary for the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) workshop. Am. J. Gastroenterol. 110, 127–136 (2015).

    Article  PubMed  Google Scholar 

  356. Morandi, C., Martellucci, J., Talento, P. & Carriero, A. Role of enterocele in the obstructed defecation syndrome (ODS): a new radiological point of view. Colorectal Dis. 12, 810–816 (2010).

    Article  CAS  PubMed  Google Scholar 

  357. Serrano Falcón, B., Barceló López, M., Mateos Muñoz, B., Álvarez Sánchez, A. & Rey, E. Fecal impaction: a systematic review of its medical complications. BMC Geriatr. 16, 4 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  358. van der Plas, R. et al. Megarectum in constipation. Arch. Dis. Child. 83, 52–58 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  359. Lunniss, P., Gladman, M. A., Benninga, M. A. & Rao, S. S. Pathophysiology of evacuation disorders. Neurogastroenterol. Motil. 21(Suppl. 2), 31–40 (2009).

    Article  PubMed  Google Scholar 

  360. D’Hoore, A. & Penninckx, F. Obstructed defecation. Colorect Dis. 5, 280–287 (2003).

    Article  Google Scholar 

  361. Rao, S. & Patcharatrakul, T. Diagnosis and treatment of dyssynergic defecation. J. Neurogastroenterol. Motil. 22, 423–435 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  362. Rostamania, G., Abramowitch, S., Chang, C. & Goldberg, R. P. Descent and hypermobility of the rectum in women with obstructed defecation symptoms. Int. Urogynecol. J. 31, 337–349 (2020).

    Article  Google Scholar 

  363. Bharucha, A. et al. Anal sphincteric neurogenic injury in asymptomatic nulliparous women and fecal incontinence. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G256–G262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.T.H. is the recipient of the Peter King Research Scholarship, Royal Australasian College of Surgeons.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to S. Mark Scott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks G. Bassotti, M. Camilleri and J. Keller for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heitmann, P.T., Vollebregt, P.F., Knowles, C.H. et al. Understanding the physiology of human defaecation and disorders of continence and evacuation. Nat Rev Gastroenterol Hepatol 18, 751–769 (2021). https://doi.org/10.1038/s41575-021-00487-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00487-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing