Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the drivers of MHC restriction of T cell receptors

Abstract

T cell discrimination of self and non-self is predicated on αβ T cell receptor (TCR) co-recognition of peptides presented by MHC molecules. Over the past 20 years, structurally focused investigations into this MHC-restricted response have provided profound insights into T cell function. Simultaneously, two models of TCR recognition have emerged, centred on whether the TCR has, through evolution, acquired an intrinsic germline-encoded capacity for MHC recognition or whether MHC reactivity is conferred by developmental selection of TCRs. Here, we review the structural and functional data that pertain to these theories of TCR recognition, which indicate that it will be necessary to assimilate features of both models to fully account for the molecular drivers of this evolutionarily ancient interaction between the TCR and MHC molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chronological view of technological developments and conceptual advances that have furthered our understanding of TCR recognition of peptide–MHC.
Fig. 2: Overview of TCR recognition of peptide–MHC class I and peptide–MHC class II.
Fig. 3: Conventional and reversed polarity TCR docking on MHC molecules.
Fig. 4: Dual causation of MHC restriction of TCRs.

Similar content being viewed by others

References

  1. Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article  PubMed  CAS  Google Scholar 

  2. Hedrick, S. M., Cohen, D. I., Nielsen, E. A. & Davis, M. M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308, 149–153 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. Yanagi, Y. et al. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308, 145–149 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. van der Merwe, P. A. & Dushek, O. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11, 47–55 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Feng, D., Bond, C. J., Ely, L. K., Maynard, J. & Garcia, K. C. Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction ‘codon’. Nat. Immunol. 8, 975–983 (2007). This study provides the first structural evidence of the interaction codon.

    Article  PubMed  CAS  Google Scholar 

  8. Garcia, K. C., Adams, J. J., Feng, D. & Ely, L. K. The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat. Immunol. 10, 143–147 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Marrack, P., Scott-Browne, J. P., Dai, S., Gapin, L. & Kappler, J. W. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu. Rev. Immunol. 26, 171–203 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Scott-Browne, J. P., White, J., Kappler, J. W., Gapin, L. & Marrack, P. Germline-encoded amino acids in the alphabeta T-cell receptor control thymic selection. Nature 458, 1043–1046 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yin, L., Scott-Browne, J., Kappler, J. W., Gapin, L. & Marrack, P. T cells and their eons-old obsession with MHC. Immunol. Rev. 250, 49–60 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jerne, N. K. The somatic generation of immune recognition. Eur. J. Immunol. 1, 1–9 (1971).

    Article  PubMed  CAS  Google Scholar 

  13. Rangarajan, S. & Mariuzza, R. A. T cell receptor bias for MHC: co-evolution or co-receptors? Cell. Mol. Life Sci. 71, 3059–3068 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Tikhonova, A. N. et al. alphabeta T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. Immunity 36, 79–91 (2012).

    Article  PubMed  CAS  Google Scholar 

  15. Van Laethem, F. et al. Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 27, 735–750 (2007).This study provides evidence for the selection theory of TCR recognition.

    Article  PubMed  CAS  Google Scholar 

  16. Van Laethem, F. et al. Lck availability during thymic selection determines the recognition specificity of the T cell repertoire. Cell 154, 1326–1341 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Van Laethem, F., Tikhonova, A. N. & Singer, A. MHC restriction is imposed on a diverse T cell receptor repertoire by CD4 and CD8 co-receptors during thymic selection. Trends Immunol. 33, 437–441 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yewdell, J. W. & Haeryfar, S. M. Understanding presentation of viral antigens to CD8+ T cells in vivo: the key to rational vaccine design. Annu. Rev. Immunol. 23, 651–682 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. Petersen, J., Purcell, A. & Rossjohn, J. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. J. Mol. Med. 87, 1045–1051 (2009).

    Article  PubMed  CAS  Google Scholar 

  20. Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    Article  PubMed  CAS  Google Scholar 

  21. Van Rhijn, I., Godfrey, D. I., Rossjohn, J. & Moody, D. B. Lipid and small-molecule display by CD1 and MR1. Nat. Rev. Immunol. 15, 643–654 (2015).

    Article  PubMed  CAS  Google Scholar 

  22. Rossjohn, J., Pellicci, D. G., Patel, O., Gapin, L. & Godfrey, D. I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12, 845–857 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bjorkman, P. J. et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. Burrows, S. R., Rossjohn, J. & McCluskey, J. Have we cut ourselves too short in mapping CTL epitopes? Trends Immunol. 27, 11–16 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. Brown, J. et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. Adams, E. J. & Luoma, A. M. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu. Rev. Immunol. 31, 529–561 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Henderson, K. N. et al. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27, 23–34 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. Smith, K. J. et al. An altered position of the alpha 2 helix of MHC class I is revealed by the crystal structure of HLA-B*3501. Immunity 4, 203–213 (1996).

    Article  PubMed  Google Scholar 

  29. Tynan, F. E. et al. High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class I. Implications for T-cell receptor engagement and T-cell immunodominance. J. Biol. Chem. 280, 23900–23909 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. Turner, S. J., Doherty, P. C., McCluskey, J. & Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6, 883–894 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. Lefranc, M. P. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 29, 207–209 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Davis, M. M. & Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  PubMed  CAS  Google Scholar 

  33. McDonald, B. D., Bunker, J. J., Erickson, S. A., Oh-Hora, M. & Bendelac, A. Crossreactive alphabeta T cell receptors are the predominant targets of thymocyte negative selection. Immunity 43, 859–869 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Merkenschlager, M. et al. How many thymocytes audition for selection? J. Exp. Med. 186, 1149–1158 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sinclair, C., Bains, I., Yates, A. J. & Seddon, B. Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system. Proc. Natl Acad. Sci. USA 110, E2905–E2914 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zerrahn, J., Held, W. & Raulet, D. H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. Huseby, E. S. et al. How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. Ignatowicz, L., Kappler, J. & Marrack, P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84, 521–529 (1996).

    Article  PubMed  CAS  Google Scholar 

  39. Chu, H. H., Moon, J. J., Kruse, A. C., Pepper, M. & Jenkins, M. K. Negative selection and peptide chemistry determine the size of naive foreign peptide-MHC class II-specific CD4+ T cell populations. J. Immunol. 185, 4705–4713 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Huseby, E. S., Crawford, F., White, J., Kappler, J. & Marrack, P. Negative selection imparts peptide specificity to the mature T cell repertoire. Proc. Natl Acad. Sci. USA 100, 11565–11570 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Turner, J. M. et al. Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell 60, 755–765 (1990).

    Article  PubMed  CAS  Google Scholar 

  42. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).

    Google Scholar 

  43. Artyomov, M. N., Lis, M., Devadas, S., Davis, M. M. & Chakraborty, A. K. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc. Natl Acad. Sci. USA 107, 16916–16921 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li, Q. J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, 791–799 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. Stepanek, O. et al. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 159, 333–345 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Scott-Browne, J. P. et al. Evolutionarily conserved features contribute to ab t cell receptor specificity. Immunity 35, 526–535 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Holland, S. J. et al. The T-cell receptor is not hardwired to engage MHC ligands. Proc. Natl Acad. Sci. USA 109, E3111–E3118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Silberman, D. et al. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors. Proc. Natl Acad. Sci. USA 113, E5608–E5617 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Garboczi, D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  PubMed  CAS  Google Scholar 

  50. Garcia, K. C. et al. An alphabeta T cell receptor structure at 2.5A and its orientation in the TCR-MHC complex. Science 274, 209–219 (1996). References 49 and 50 provide the first molecular snapshots of the TCR–pMHC interaction.

    Article  PubMed  CAS  Google Scholar 

  51. Garcia, K. C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article  PubMed  CAS  Google Scholar 

  52. Ding, Y. H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8, 403–411 (1998).

    Article  PubMed  CAS  Google Scholar 

  53. Manning, T. C. et al. Alanine scanning mutagenesis of an alphabeta T cell receptor: mapping the energy of antigen recognition. Immunity 8, 413–425 (1998).

    Article  PubMed  CAS  Google Scholar 

  54. Reinherz, E. L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

    Article  PubMed  CAS  Google Scholar 

  55. Reiser, J. B. et al. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. Reiser, J. B. et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 4, 241–247 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. Kjer-Nielsen, L. et al. A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

    Article  PubMed  CAS  Google Scholar 

  58. Stewart-Jones, G. B., McMichael, A. J., Bell, J. I., Stuart, D. I. & Jones, E. Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).

    Article  PubMed  CAS  Google Scholar 

  59. Archbold, J. K. et al. Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition. J. Exp. Med. 206, 209–219 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Deng, L. et al. Structural basis for the recognition of mutant self by a tumor-specific, MHC class II-restricted T cell receptor. Nat. Immunol. 8, 398–408 (2007).

    Article  PubMed  CAS  Google Scholar 

  61. Chen, J. L. et al. Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J. Exp. Med. 201, 1243–1255 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Colf, L. A. et al. How a single T cell receptor recognizes both self and foreign MHC. Cell 129, 135–146 (2007).

    Article  PubMed  CAS  Google Scholar 

  63. Macdonald, W. A. et al. T cell allorecognition via molecular mimicry. Immunity 31, 897–908 (2009). References 62 and 63 describe the molecular basis of T cell alloreactivity.

    Article  PubMed  CAS  Google Scholar 

  64. Hahn, M., Nicholson, M. J., Pyrdol, J. & Wucherpfennig, K. W. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat. Immunol. 6, 490–496 (2005). This study provides the first insight into an autoreactive TCR–pMHC interaction.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Li, Y. et al. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J. 24, 2968–2979 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Borbulevych, O. Y. et al. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. Immunity 31, 885–896 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tynan, F. E. et al. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nat. Immunol. 8, 268–276 (2007).

    Article  PubMed  CAS  Google Scholar 

  68. Tynan, F. E. et al. T cell receptor recognition of a ‘super-bulged’ major histocompatibility complex class I-bound peptide. Nat. Immunol. 6, 1114–1122 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. Burrows, S. R. et al. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. Proc. Natl Acad. Sci. USA 107, 10608–10613 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Turner, S. J. et al. Lack of prominent peptide-major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations. Nat. Immunol. 6, 382–389 (2005).

    Article  PubMed  CAS  Google Scholar 

  71. Day, E. B. et al. Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8+ T-cell responses. Proc. Natl Acad. Sci. USA 108, 9536–9541 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gras, S., Kjer-Nielsen, L., Burrows, S. R., McCluskey, J. & Rossjohn, J. T-cell receptor bias and immunity. Curr. Opin. Immunol. 20, 119–125 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. Borg, N. A. et al. The CDR3 regions of an immunodominant T cell receptor dictate the ‘energetic landscape’ of peptide-MHC recognition. Nat. Immunol. 6, 171–180 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. Gras, S. et al. The shaping of T cell receptor recognition by self-tolerance. Immunity 30, 193–203 (2009).

    Article  PubMed  CAS  Google Scholar 

  75. Dai, S. et al. Crossreactive T cells spotlight the germline rules for [alpha][beta] T cell-receptor interactions with MHC molecules. Immunity 28, 324–334 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Blevins, S. J. et al. How structural adaptability exists alongside HLA-A2 bias in the human alphabeta TCR repertoire. Proc. Natl Acad. Sci. USA 113, E1276–E1285 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ladell, K. et al. A molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T cells. Immunity 38, 425–436 (2013).

    Article  PubMed  CAS  Google Scholar 

  79. Petersen, J. et al. Determinants of gliadin-specific T cell selection in celiac disease. J. Immunol. 194, 6112–6122 (2015).

    Article  PubMed  CAS  Google Scholar 

  80. Broughton, S. E. et al. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Immunity 37, 611–621 (2012).

    Article  PubMed  CAS  Google Scholar 

  81. Petersen, J. et al. T-cell receptor recognition of HLA-DQ2-gliadin complexes associated with celiac disease. Nat. Struct. Mol. Biol. 21, 480–488 (2014).

    Article  PubMed  CAS  Google Scholar 

  82. Gras, S. et al. A structural basis for varied αβTCR usage against an immunodominant EBV antigen restricted to a HLA-B8 molecule. J. Immunol. 188, 311–321 (2012).

    Article  PubMed  CAS  Google Scholar 

  83. Gras, S. et al. Allelic polymorphism in the T cell receptor and its impact on immune responses. J. Exp. Med. 207, 1555–1567 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sethi, D. K. et al. A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC. J. Exp. Med. 208, 91–102 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sethi, D. K., Gordo, S., Schubert, D. A. & Wucherpfennig, K. W. Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop. Nat. Commun. 4, 2623 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Yin, L. et al. A single T cell receptor bound to major histocompatibility complex class I and class II glycoproteins reveals switchable TCR conformers. Immunity 35, 23–33 (2011).This paper describes how a TCR can bind both MHC class I and MHC class II molecules.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bulek, A. M. et al. Structural basis for the killing of human beta cells by CD8+ T cells in type 1 diabetes. Nat. Immunol. 13, 283–289 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Stewart-Jones, G. B. et al. Structural features underlying T-cell receptor sensitivity to concealed MHC class I micropolymorphisms. Proc. Natl Acad. Sci. USA 109, E3483–E3492 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liu, Y. C. et al. A molecular basis for the interplay between T cells, viral mutants, and human leukocyte antigen micropolymorphism. J. Biol. Chem. 289, 16688–16698 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Birnbaum, M. E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Cole, D. K. et al. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J. Clin. Invest. 126, 3626–3626 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Adams, J. J. et al. Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat. Immunol. 17, 87–94 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Adams, J. J. et al. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35, 681–693 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Stadinski, B. D. et al. A role for differential variable gene pairing in creating T cell receptors specific for unique major histocompatibility ligands. Immunity 35, 694–704 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Culshaw, A. et al. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+ T cell response. Nat. Immunol. 18, 1228–1237 (2017).

    Article  PubMed  CAS  Google Scholar 

  96. Van Braeckel-Budimir, N. et al. A T cell receptor locus harbors a malaria-specific immune response gene. Immunity 47, 835–847 (2017).

    Article  PubMed  CAS  Google Scholar 

  97. Beringer, D. X. et al. T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex. Nat. Immunol. 16, 1153–1161 (2015).

    Article  PubMed  CAS  Google Scholar 

  98. Gras, S. et al. Reversed T cell receptor docking on a major histocompatibility class I complex limits involvement in the immune response. Immunity 45, 749–760 (2016). References 97 and 98 highlight the existence of reversed TCR–pMHC docking topologies.

    Article  PubMed  CAS  Google Scholar 

  99. Garcia, K. C. Reconciling views on T cell receptor germline bias for MHC. Trends Immunol. 33, 429–436 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Parrish, H. L., Deshpande, N. R., Vasic, J. & Kuhns, M. S. Functional evidence for TCR-intrinsic specificity for MHCII. Proc. Natl Acad. Sci. USA 113, 3000–3005 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Yin, Y., Wang, X. X. & Mariuzza, R. A. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4. Proc. Natl Acad. Sci. USA 109, 5405–5410 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. He, Y. et al. Identification of the docking site for CD3 on the T cell receptor beta chain by solution NMR. J. Biol. Chem. 290, 19796–19805 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Li, Y., Yin, Y. & Mariuzza, R. A. Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front. Immunol. 4, 206 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Barnd, D. L., Lan, M. S., Metzgar, R. S. & Finn, O. J. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc. Natl Acad. Sci. USA 86, 7159–7163 (1989).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hanada, K., Wang, Q. J., Inozume, T. & Yang, J. C. Molecular identification of an MHC-independent ligand recognized by a human alpha/beta T-cell receptor. Blood 117, 4816–4825 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Magarian-Blander, J., Ciborowski, P., Hsia, S., Watkins, S. C. & Finn, O. J. Intercellular and intracellular events following the MHC-unrestricted TCR recognition of a tumor-specific peptide epitope on the epithelial antigen MUC1. J. Immunol. 160, 3111–3120 (1998).

    PubMed  CAS  Google Scholar 

  107. Rao, A., Ko, W. W., Faas, S. J. & Cantor, H. Binding of antigen in the absence of histocompatibility proteins by arsonate-reactive T-cell clones. Cell 36, 879–888 (1984).

    Article  PubMed  CAS  Google Scholar 

  108. Siliciano, R. F. et al. Direct evidence for the existence of nominal antigen binding sites on T cell surface Ti alpha-beta heterodimers of MHC-restricted T cell clones. Cell 47, 161–171 (1986).

    Article  PubMed  CAS  Google Scholar 

  109. Ferreira, M. A. et al. Quantitative trait loci for CD4:CD8 lymphocyte ratio are associated with risk of type 1 diabetes and HIV-1 immune control. Am. J. Hum. Genet. 86, 88–92 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Gulwani-Akolkar, B. et al. Do HLA genes play a prominent role in determining T cell receptor V alpha segment usage in humans? J. Immunol. 154, 3843–3851 (1995).

    PubMed  CAS  Google Scholar 

  111. Klarenbeek, P. L. et al. Somatic variation of T-cell receptor genes strongly associate with HLA class restriction. PLOS One 10, e0140815 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Sim, B. C., Zerva, L., Greene, M. I. & Gascoigne, N. R. Control of MHC restriction by TCR Valpha CDR1 and CDR2. Science 273, 963–966 (1996).

    Article  PubMed  CAS  Google Scholar 

  113. Rubelt, F. et al. Individual heritable differences result in unique cell lymphocyte receptor repertoires of naive and antigen-experienced cells. Nat. Commun. 7, 11112 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Zvyagin, I. V. et al. Distinctive properties of identical twins’ TCR repertoires revealed by high-throughput sequencing. Proc. Natl Acad. Sci. USA 111, 5980–5985 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Emerson, R. O. et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat. Genet. 49, 659–665 (2017).

    Article  PubMed  CAS  Google Scholar 

  116. Sharon, E. et al. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat. Genet. 48, 995–1002 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Madi, A. et al. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. Elife 6, e22057 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547, 89–93 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 94–98 (2017). References 118 and 119 highlight the power of systems-based immunology in identifying predictable features in TCR responses.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Mayr, E. Cause and effect in biology. Science 134, 1501–1506 (1961).

    Article  PubMed  CAS  Google Scholar 

  121. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  PubMed  CAS  Google Scholar 

  122. Ding, Y. H., Baker, B. M., Garboczi, D. N., Biddison, W. E. & Wiley, D. C. Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11, 45–56 (1999).

    Article  PubMed  CAS  Google Scholar 

  123. Reiser, J. B. et al. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat. Immunol. 1, 291–297 (2000).

    Article  PubMed  CAS  Google Scholar 

  124. Degano, M. et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).

    Article  PubMed  CAS  Google Scholar 

  125. Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007). This study describes tetramer-based magnetic enrichment, which enables the routine detection of antigen-specific CD4 + and CD8 + T cells from naive individuals.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Robins, H. S. et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114, 4099–4107 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Dash, P. et al. Paired analysis of TCRalpha and TCRbeta chains at the single-cell level in mice. J. Clin. Invest. 121, 288–295 (2011).

    Article  PubMed  CAS  Google Scholar 

  128. Wang, G. C., Dash, P., McCullers, J. A., Doherty, P. C. & Thomas, P. G. T cell receptor alphabeta diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci. Transl. Med. 4, 128ra142 (2012).

    Google Scholar 

  129. Kim, S. M. et al. Analysis of the paired TCR alpha- and beta-chains of single human T cells. PLOS ONE 7, e37338 (2012). References 127–129 describe the analysis of the TCR α-chain and β-chain from single cells in mice and humans.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Bolotin, D. A. et al. Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms. Eur. J. Immunol. 42, 3073–3083 (2012).

    Article  PubMed  CAS  Google Scholar 

  131. Bolotin, D. A. et al. MiTCR: software for T-cell receptor sequencing data analysis. Nat. Methods 10, 813–814 (2013).

    Article  PubMed  CAS  Google Scholar 

  132. Turchaninova, M. A. et al. Pairing of T-cell receptor chains via emulsion PCR. Eur. J. Immunol. 43, 2507–2515 (2013).

    Article  PubMed  CAS  Google Scholar 

  133. Howie, B. et al. High-throughput pairing of T cell receptor alpha and beta sequences. Sci. Transl. Med. 7, 301ra131 (2015).

    Article  PubMed  CAS  Google Scholar 

  134. Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Zareie for helpful comments and contributions. This work was supported by funding from the Australian National Health and Medical Research Council (NHMRC) and the Australian Research Council (ARC). N.L.L.G. is an ARC Future Fellow, S.G. is a Monash Senior Research Fellow and J.R. is an Australian ARC Laureate Fellow.

Reviewer information

Nature Reviews Immunology thanks B. Baker, C. Garcia and P. Marrack for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Nicole L. La Gruta or Jamie Rossjohn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Protein Data Bank (PDB): http://www.rcsb.org/

Supplementary information

41577_2018_7_MOESM1_ESM.pdf

Supplementary Figure 1 Cumulative number of TCR–pMHC ternary complex crystal structures and antigen-specific TCR sequences.

Supplementary Table 1 Chronological list of unique TCR–pMHC complexes

Glossary

Register

The position of a peptide within the binding groove of the MHC molecule.

MHC allomorphs

Different forms of an MHC protein encoded by different MHC alleles.

TCR bias

Preferential usage of T cell receptors (TCRs) with specific characteristics, including gene segment usage and/or complementarity-determining region 3 (CDR3) sequence, that is typically observed in antigen-specific TCR repertoires.

Degeneracy

The ability of a T cell receptor to recognize more than one peptide–MHC complex.

Ternary complexes

Protein complexes containing three different molecules bound together — namely, the T cell receptor, peptide and an MHC molecule.

Pairwise interactions

Conserved interactions between particular residues on the MHC molecule with paired or matching residues on the T cell receptor.

Molecular mimicry

Similarity in peptide sequences that is sufficient to induce cross reactivity among T cell receptors.

Expression quantitative trait locus

A genetic locus that contributes to variation in expression levels of particular genes.

Public sequences

T cell receptor sequences that are often found across multiple individuals.

Proximate causation

The immediate influences on an outcome, for example, thymic selection of T cell receptors that can recognize MHC molecules.

Ultimate causation

The distal or evolutionary influences on an outcome, for example, the evolution of germline-encoded T cell receptor recognition of MHC molecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Gruta, N.L., Gras, S., Daley, S.R. et al. Understanding the drivers of MHC restriction of T cell receptors. Nat Rev Immunol 18, 467–478 (2018). https://doi.org/10.1038/s41577-018-0007-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0007-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing