Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organellar homeostasis and innate immune sensing

Abstract

A cell is delimited by numerous borders that define specific organelles. The walls of some organelles are particularly robust, such as in mitochondria or endoplasmic reticulum, but some are more fluid such as in phase-separated stress granules. Either way, all organelles can be damaged at times, leading their contents to leak out into the surrounding environment. Therefore, an elegant way to construct an innate immune defence system is to recognize host molecules that do not normally reside within a particular compartment. Here, we provide several examples where organellar homeostasis is lost, leading to the activation of a specific innate immune sensor; these include NLRP3 activation owing to a disrupted trans-Golgi network, Pyrin activation due to cytoskeletal damage, and cGAS–STING activation following the leakage of nuclear or mitochondrial DNA. Frequently, organelle damage is observed downstream of pathogenic infection but it can also occur in sterile settings as associated with auto-inflammatory disease. Therefore, understanding organellar homeostasis is central to efforts that will identify new innate immune pathways, and therapeutics that balance organellar homeostasis, or target the breakdown pathways that trigger innate immune sensors, could be useful treatments for infection and chronic inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Loss of nuclear homeostasis triggers innate immune sensors.
Fig. 2: Loss of mitochondrial homeostasis triggers innate immune sensors.
Fig. 3: ER stress triggers innate immune sensors.
Fig. 4: Loss of ribosome homeostasis triggers innate immune sensors.
Fig. 5: Loss of Golgi homeostasis triggers innate immune sensors.
Fig. 6: Loss of lysosomal homeostasis triggers innate immune sensors.
Fig. 7: Loss of cytoskeletal homeostasis triggers innate immune sensors.
Fig. 8: Loss of membraneless organelle homeostasis triggers innate immune sensors.

Similar content being viewed by others

References

  1. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coquel, F. et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557, 57–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartsch, K. et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genet. 26, 3960–3972 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Pokatayev, V. et al. RNase H2 catalytic core Aicardi-Goutieres syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J. Exp. Med. 213, 329–336 (2016). Physiological evidence in mice that genetic deletion of Sting rescues disease due to loss of nuclear RNA homeostasis in a model of Aicardi–Goutières syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amor-Gueret, M. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis. Cancer Lett. 236, 1–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Gratia, M. et al. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. J. Exp. Med. 216, 1199–1213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin, S. K., Tomida, J. & Wood, R. D. Disruption of DNA polymerase zeta engages an innate immune response. Cell Rep. 34, 108775 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song, X., Ma, F. & Herrup, K. Accumulation of cytoplasmic DNA due to ATM deficiency activates the microglial viral response system with neurotoxic consequences. J. Neurosci. 39, 6378–6394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Crow, Y. J. et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006). Characterization of a human disease caused by loss of the exonuclease TREX1, without which stray DNA accumulates in the cytoplasm, triggering cGAS–STING.

    Article  CAS  PubMed  Google Scholar 

  14. Di Micco, A. et al. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc. Natl Acad. Sci. USA 113, E4671–E4680 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl Acad. Sci. USA 109, 19386–19391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jakobs, C., Perner, S. & Hornung, V. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One 10, e0131702 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Baum, R. et al. Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J. Immunol. 194, 873–877 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Li, T. et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 371, eabc5386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uggenti, C. et al. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat. Genet. 52, 1364–1372 (2020). Inactive cGAS is tethered to DNA via chromatin; however, mutations affecting histones remove this brake and cause auto-inflammatory disease.

    Article  CAS  PubMed  Google Scholar 

  20. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Gul, E. et al. Type I IFN-related NETosis in ataxia telangiectasia and Artemis deficiency. J. Allergy Clin. Immunol. 142, 246–257 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, J. et al. Extracellular histones are major mediators of death in sepsis. Nat. Med. 15, 1318–1321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allam, R., Kumar, S. V., Darisipudi, M. N. & Anders, H. J. Extracellular histones in tissue injury and inflammation. J. Mol. Med. 92, 465–472 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Lai, J. J., Cruz, F. M. & Rock, K. L. Immune sensing of cell death through recognition of histone sequences by C-type lectin-receptor-2d causes inflammation and tissue injury. Immunity 52, 123–135.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Bertheloot, D. & Latz, E. HMGB1, IL-1alpha, IL-33 and S100 proteins: dual-function alarmins. Cell Mol. Immunol. 14, 43–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Liu-Bryan, R. & Terkeltaub, R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 62, 2004–2012 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Kokkola, R. et al. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum. 48, 2052–2058 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Jia, C. et al. Endothelial cell pyroptosis plays an important role in Kawasaki disease via HMGB1/RAGE/cathespin B signaling pathway and NLRP3 inflammasome activation. Cell Death Dis. 10, 778 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ashrafi, G. & Schwarz, T. L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Cardon, L. R., Burge, C., Clayton, D. A. & Karlin, S. Pervasive CpG suppression in animal mitochondrial genomes. Proc. Natl Acad. Sci. 91, 3799–3803 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taanman, J.-W. The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta 1410, 103–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    Article  PubMed  CAS  Google Scholar 

  41. Andreeva, L. et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 549, 394–398 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bernardini, J. P. et al. Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. EMBO J. 38, e99916 (2019).

    Article  PubMed  CAS  Google Scholar 

  45. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patrushev, M. et al. Mitochondrial permeability transition triggers the release of mtDNA fragments. Cell Mol. Life Sci. 61, 3100–3103 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Patrushev, M. et al. Release of mitochondrial DNA fragments from brain mitochondria of irradiated mice. Mitochondrion 6, 43–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366, 1531–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu, C. H. et al. TDP-43 triggers mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell 183, 636–649.e18 (2020). A mechanism is described for mtDNA release from mitochondria via the mitochondrial permeability transition pore, resulting in neuroinflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lepelley, A. et al. Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A. J. Exp. Med. 218, e20201560 (2021). Mutations in a mitochondrial protein lead to mtDNA release and cGAS–STING activation with a purely neurological phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251–255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Z. et al. Mitochondrial DNA-LL-37 complex promotes atherosclerosis by escaping from autophagic recognition. Immunity 43, 1137–1147 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Saito, Y. et al. DNase II activated by the mitochondrial apoptotic pathway regulates RIP1-dependent non-apoptotic hepatocyte death via the TLR9/IFN-beta signaling pathway. Cell Death Differ. 26, 470–486 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Ojala, D., Montoya, J. & Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474 (1981).

    Article  CAS  PubMed  Google Scholar 

  55. Mercer, T. R. et al. The human mitochondrial transcriptome. Cell 146, 645–658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aloni, Y. & Attardi, G. Symmetrical in vivo transcription of mitochondrial DNA in HeLa cells. Proc. Natl Acad. Sci. USA 68, 1757–1761 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Young, P. G. & Attardi, G. Characterization of double-stranded RNA from HeLa cell mitochondria. Biochem. Biophys. Res. Commun. 65, 1201–1207 (1975).

    Article  CAS  PubMed  Google Scholar 

  58. Dhir, A. et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560, 238–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, Y. et al. PKR senses nuclear and mitochondrial signals by interacting with endogenous double-stranded RNAs. Mol. Cell 71, 1051–1063.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Matilainen, S. et al. Defective mitochondrial RNA processing due to PNPT1 variants causes Leigh syndrome. Hum. Mol. Genet. 26, 3352–3361 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Bauernfried, S., Scherr, M. J., Pichlmair, A., Duderstadt, K. E. & Hornung, V. Human NLRP1 is a sensor for double-stranded RNA. Science 371, eabd0811 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Roy, C. R., Salcedo, S. P. & Gorvel, J. P. Pathogen-endoplasmic-reticulum interactions: in through the out door. Nat. Rev. Immunol. 6, 136–147 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Karagöz, G. E. et al. An unfolded protein-induced conformational switch activates mammalian IRE1. eLife 6, e30700 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R. & Ali, M. M. U. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci. 6, 11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Jiang, P., Gan, M., Lin, W. L. & Yen, S. H. Nutrient deprivation induces alpha-synuclein aggregation through endoplasmic reticulum stress response and SREBP2 pathway. Front. Aging Neurosci. 6, 268 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Olzscha, H. Posttranslational modifications and proteinopathies: how guardians of the proteome are defeated. Biol. Chem. 400, 895–915 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Krebs, J., Agellon, L. B. & Michalak, M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem. Biophys. Res. Commun. 460, 114–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Sun, S. et al. IRE1alpha is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nat. Cell Biol. 17, 1546–1555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keestra-Gounder, A. M. et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394–397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Molinaro, R., Mukherjee, T., Flick, R., Philpott, D. J. & Girardin, S. E. Trace levels of peptidoglycan in serum underlie the NOD-dependent cytokine response to endoplasmic reticulum stress. J. Biol. Chem. 294, 9007–9015 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fritz, T., Niederreiter, L., Adolph, T., Blumberg, R. S. & Kaser, A. Crohn’s disease: NOD2, autophagy and ER stress converge. Gut 60, 1580–1588 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Cao, S. S. Epithelial ER stress in Crohn’s disease and ulcerative colitis. Inflamm. Bowel Dis. 22, 984–993 (2016).

    Article  PubMed  Google Scholar 

  76. Dobbs, N. et al. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18, 157–168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Srikanth, S. et al. The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat. Immunol. 20, 152–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, W. et al. ER adaptor SCAP translocates and recruits IRF3 to perinuclear microsome induced by cytosolic microbial DNAs. PLoS Pathog. 12, e1005462 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Chu, T. T. et al. Tonic prime-boost of STING signalling mediates Niemann-Pick disease type C. Nature 596, 570–575 (2021). Appropriate lysosome function is required to prevent STING accumulation and activation in Niemann–Pick disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fermaintt, C. S. et al. A bioactive mammalian disaccharide associated with autoimmunity activates STING-TBK1-dependent immune response. Nat. Commun. 10, 2377 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Harada, Y. et al. Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation. J. Biol. Chem. 288, 32673–32684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Green, R. S. et al. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27, 308–320 (2007). Endogenous N-glycans accumulate when branching is disrupted, and they trigger innate immune lectin receptors in a mannose-dependent fashion.

    Article  CAS  PubMed  Google Scholar 

  83. Hasan, M. et al. Cytosolic Nuclease TREX1 regulates oligosaccharyltransferase activity independent of nuclease activity to suppress immune activation. Immunity 43, 463–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Riise Stensland, H. M. et al. Identification of two novel beta-mannosidosis-associated sequence variants: biochemical analysis of beta-mannosidase (MANBA) missense mutations. Mol. Genet. Metab. 94, 476–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Heazlewood, C. K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, e54 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hasnain, S. Z., Lourie, R., Das, I., Chen, A. C. & McGuckin, M. A. The interplay between endoplasmic reticulum stress and inflammation. Immunol. Cell Biol. 90, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Levin, D. & London, I. M. Regulation of protein synthesis: activation by double-stranded RNA of a protein kinase that phosphorylates eukaryotic initiation factor 2. Proc. Natl Acad. Sci. USA 75, 1121–1125 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoang, H.-D., Graber, T. E. & Alain, T. Battling for ribosomes: translational control at the forefront of the antiviral response. J. Mol. Biol. 430, 1965–1992 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Vyleta, M. L., Wong, J. & Magun, B. E. Suppression of ribosomal function triggers innate immune signaling through activation of the NLRP3 inflammasome. PLoS One 7, e36044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Briard, B. et al. Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wan, L. et al. Translation stress and collided ribosomes are co-activators of cGAS. Mol. Cell 81, 2808–2822.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Gross, C. J. et al. K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45, 761–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Sanman, L. E. et al. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 5, e13663 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Meng, G., Zhang, F., Fuss, I., Kitani, A. & Strober, W. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 30, 860–874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, J. & Chen, Z. J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564, 71–76 (2018). A unifying hypothesis for NLRP3 activation based on dispersal of the trans-Golgi network.

    Article  CAS  PubMed  Google Scholar 

  98. Magupalli, V. G. et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 369, eaas8995 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ogawa, E., Mukai, K., Saito, K., Arai, H. & Taguchi, T. The binding of TBK1 to STING requires exocytic membrane traffic from the ER. Biochem. Biophys. Res. Commun. 503, 138–145 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Deng, Z. et al. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J. Exp. Med. 217, e20201045 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Mukai, K. et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER. Nat. Commun. 12, 61 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lepelley, A. et al. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J. Exp. Med. 217, e20200600 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Uhlorn, B. L., Gamez, E. R., Li, S. & Campos, S. K. Attenuation of cGAS/STING activity during mitosis. Life Sci. Alliance 3, e201900636 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gicquel, T. et al. IL-1beta production is dependent on the activation of purinergic receptors and NLRP3 pathway in human macrophages. FASEB J. 29, 4162–4173 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Campden, R. I. & Zhang, Y. The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. Arch. Biochem. Biophys. 670, 32–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Orlowski, G. M. et al. Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation. J. Immunol. 195, 1685–1697 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Masters, S. L. & O’Neill, L. A. Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol. Med. 17, 276–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Harris, J. et al. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem. 286, 9587–9597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kimura, T. et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210, 973–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shi, C. S. et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Spalinger, M. R. et al. PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy 13, 1590–1601 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mehto, S. et al. The Crohn’s disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy. Mol. Cell 73, 429–445.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gui, X. et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567, 262–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Yamashiro, L. H. et al. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat. Commun. 11, 3382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Konno, H., Konno, K. & Barber, G. N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gonugunta, V. K. et al. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Rep. 21, 3234–3242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gkirtzimanaki, K. et al. IFNα impairs autophagic degradation of mtDNA Promoting autoreactivity of SLE monocytes in a STING-dependent fashion. Cell Rep. 25, 921–933.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lan, Y. Y., Londono, D., Bouley, R., Rooney, M. S. & Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 9, 180–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jena, K. K. et al. Autoimmunity gene IRGM suppresses cGAS-STING and RIG-I-MAVS signaling to control interferon response. EMBO Rep. 21, e50051 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McAlpine, W. et al. Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function. Proc. Natl Acad. Sci. USA 115, E11523–E11531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Monteith, A. J. et al. Defects in lysosomal maturation facilitate the activation of innate sensors in systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 113, E2142–E2151 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mostowy, S. & Cossart, P. Septins: the fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 13, 183–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Park, Y. H. et al. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat. Immunol. 21, 857–867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Masters, S. L. et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci. Transl. Med. 8, 332ra345 (2016).

    Article  CAS  Google Scholar 

  127. Akula, M. K. et al. Control of the innate immune response by the mevalonate pathway. Nat. Immunol. 17, 922–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Park, Y. H., Wood, G., Kastner, D. L. & Chae, J. J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim, M. L. et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1beta. J. Exp. Med. 212, 927–938 (2015). Evidence in a mouse model of disease that increased actin polymerization results in Pyrin inflammasome activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yu, J. W. et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol. Cell 28, 214–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Papa, R., Penco, F., Volpi, S. & Gattorno, M. Actin remodeling defects leading to autoinflammation and immune dysregulation. Front. Immunol. 11, 604206 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Fukazawa, A. et al. GEF-H1 mediated control of NOD1 dependent NF-kappaB activation by Shigella effectors. PLoS Pathog. 4, e1000228 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Keestra, A. M. et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496, 233–237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kufer, T. A., Kremmer, E., Adam, A. C., Philpott, D. J. & Sansonetti, P. J. The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol. 10, 477–486 (2008).

    CAS  PubMed  Google Scholar 

  135. Bielig, H. et al. The cofilin phosphatase slingshot homolog 1 (SSH1) links NOD1 signaling to actin remodeling. PLoS Pathog. 10, e1004351 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Legrand-Poels, S. et al. Modulation of Nod2-dependent NF-kappaB signaling by the actin cytoskeleton. J. Cell Sci. 120, 1299–1310 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Ahrens, S. et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36, 635–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, J. G. et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36, 646–657 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Canton, J. et al. The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nat. Immunol. 22, 140–153 (2021). This paper along with Zhang et al. simultaneously describe how F-actin can be recognized outside the cell as a danger signal by Clec9A, also called DNGR1.

    Article  CAS  PubMed  Google Scholar 

  140. Schulz, O. et al. Myosin II synergizes with F-actin to promote DNGR-1-dependent cross-presentation of dead cell-associated antigens. Cell Rep. 24, 419–428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McCormick, C. & Khaperskyy, D. A. Translation inhibition and stress granules in the antiviral immune response. Nat. Rev. Immunol. 17, 647 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Reineke, L. C., Kedersha, N., Langereis, M. A., van Kuppeveld, F. J. & Lloyd, R. E. Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1. mBio 6, e02486 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Onomoto, K. et al. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 7, e43031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Langereis, M. A., Feng, Q. & van Kuppeveld, F. J. MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon. J. Virol. 87, 6314–6325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Okonski, K. M. & Samuel, C. E. Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. J. Virol. 87, 756–766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Vitre, B. D. & Cleveland, D. W. Centrosomes, chromosome instability (CIN) and aneuploidy. Curr. Opin. Cell Biol. 24, 809–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Min, J., Wright, W. E. & Shay, J. W. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes Dev. 33, 814–827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Abdisalaam, S. et al. Dysfunctional telomeres trigger cellular senescence mediated by cyclic GMP-AMP synthase. J. Biol. Chem. 295, 11144–11160 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Samir, P. et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature 573, 590–594 (2019). Loss of phase separation could liberate DDX3X, which is shown here to license NLRP3 activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shen, C. et al. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184, 5759–5774.e20 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Latonen, L. Phase-to-phase with nucleoli - stress responses, protein aggregation and novel roles of RNA. Front. Cell Neurosci. 13, 151 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ma, W. & Mayr, C. A membraneless organelle associated with the endoplasmic reticulum enables 3’UTR-mediated protein-protein interactions. Cell 175, 1492–1506.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Case, L. B., Zhang, X., Ditlev, J. A. & Rosen, M. K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 363, 1093–1097 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.L.M. acknowledges funding from NHMRC grant (2003159), The Sylvia and Charles Viertel Foundation, and HHMI-Wellcome International Research Scholarship. S.L.M. is a scientific advisor for IFM therapeutics and NRG therapeutics. A.S. is supported by the DFG (GRK2168) and the University of Melbourne through the International Research and Research Training Fund and is a student in the Bonn-Melbourne PhD program IRTG2168 (DFG).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Seth L. Masters.

Ethics declarations

Competing interests

S.L.M. is a scientific advisor for IFM therapeutics and NRG therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks G. Nunez, H. Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Micronuclei

Small extra-nuclear structures often containing damaged chromosome fragments or whole chromosomes.

Necrosis

An unregulated form of cell death resulting from internal or external stressors.

Cathepsin

Family of lysosomal cysteine proteases.

Oxidative stress

Form of cellular stress caused by an imbalance of the production and accumulation of oxygen species.

Nucleoids

Region within prokaryotic cells that contains majority of genetic material.

Peptidoglycan

Structural element of bacterial cell walls consisting of glycan strands cross linked by peptides.

Mucin

Group of highly glycosylated proteins that are the primary constituents of mucus.

Anterograde

Pathway of transport that newly synthesized proteins take from the endoplasmic reticulum to the Golgi.

Retrograde

Pathway of transport from the Golgi to the endoplasmic reticulum.

Autophagosome

Double-layered membrane vesicle involved in intracellular degradation pathway.

Endolysosomes

Structure resulting in the fusion between lysosomes and endosomes.

Geranylation

Form of post-translational modification.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harapas, C.R., Idiiatullina, E., Al-Azab, M. et al. Organellar homeostasis and innate immune sensing. Nat Rev Immunol 22, 535–549 (2022). https://doi.org/10.1038/s41577-022-00682-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00682-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing