Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota

Abstract

The gut microbiota contributes to diverse aspects of host physiology, ranging from immunomodulation to drug metabolism. Changes in the gut microbiota composition are associated with various diseases as well as with the response to medications. It is therefore important to understand how different lifestyle and environmental factors shape gut microbiota composition. Beyond the commonly considered factor of diet, small-molecule drugs have recently been identified as major effectors of the microbiota composition. Other xenobiotics, such as environmental or chemical pollutants, can also impact gut bacterial communities. Here, we review the mechanisms of interactions between gut bacteria and antibiotics, host-targeted drugs, natural food compounds, food additives and environmental pollutants. While xenobiotics can impact bacterial growth and metabolism, bacteria in turn can bioaccumulate or chemically modify these compounds. These reciprocal interactions can manifest in complex xenobiotic–microbiota–host relationships. Our Review highlights the need to study mechanisms underlying interactions with pollutants and food additives towards deciphering the dynamics and evolution of the gut microbiota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reciprocal interactions between the gut microbiota and xenobiotics.
Fig. 2: Overview of ingested xenobiotics.
Fig. 3: Xenobiotic–gut bacteria interactions.
Fig. 4: An overview of xenobiotic–gut bacteria interactions investigated at the species level.
Fig. 5: Models used to investigate xenobiotic–microbiota–host interactions.

Similar content being viewed by others

References

  1. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Li, J. H. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    CAS  PubMed  Google Scholar 

  3. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    CAS  PubMed  Google Scholar 

  4. Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

    CAS  PubMed  Google Scholar 

  8. Rajagopala, S. V. et al. The human microbiome and cancer. Cancer Prev. Res. 10, 226–234 (2017).

    Google Scholar 

  9. Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V. & Dinan, T. G. The gut microbiome in neurological disorders. Lancet Neurol. 19, 179–194 (2020).

    CAS  PubMed  Google Scholar 

  10. Baquero, F. & Nombela, C. The microbiome as a human organ. Clin. Microbiol. Infect. 18, 2–4 (2012).

    CAS  PubMed  Google Scholar 

  11. Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2021).

    CAS  PubMed  Google Scholar 

  12. Lee-Sarwar, K. A., Lasky-Su, J., Kelly, R. S., Litonjua, A. A. & Weiss, S. T. Metabolome–microbiome crosstalk and human disease. Metabolites 10, 181 (2020).

    CAS  PubMed Central  Google Scholar 

  13. Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shuo Han, W. V. T. et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595, 415–420 (2021). Microbiome-focused in vitro metabolomics pipeline to systematically characterize bacterial metabolism, which is essential for mechanistic understanding of microbial metabolic potential.

    PubMed  PubMed Central  Google Scholar 

  15. Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature 587, 448–454 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hughes, D. A. et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat. Microbiol. 5, 1079 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Abdelsalam, N. A., Ramadan, A. T., ElRakaiby, M. T. & Aziz, R. K. Toxicomicrobiomics: the human microbiome vs. pharmaceutical, dietary, and environmental xenobiotics. Front. Pharmacol. 11, 390 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    CAS  PubMed  Google Scholar 

  19. Gacesa, R. et al. The Dutch Microbiome Project defines factors that shape the healthy gut microbiome. BioRxiv https://doi.org/10.1101/2020.11.27.401125 (2020).

    Article  Google Scholar 

  20. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210 (2018). Genotype and microbiome examination of 1,046 healthy individuals disentangling genetic and environmental influences on the composition of the gut microbiota.

    CAS  PubMed  Google Scholar 

  21. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    CAS  PubMed  Google Scholar 

  22. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium eggerthella lenta. Science 341, 295–298 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindenbaum, J., Rund, D. G., Butler, V. P., Tse-Eng, D. & Saha, J. R. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N. Engl. J. Med. 305, 789–794 (1981).

    CAS  PubMed  Google Scholar 

  25. Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019). Gnotobiotic mouse models and in vitro screens allowed to identify an interspecies pathway for gut bacterial levodopa metabolism, characterize responsible genes and suggest a chemical strategy to successfully inhibit bacterial drug metabolism in vivo.

    PubMed  Google Scholar 

  26. Pristner, M. & Warth, B. Drug-exposome interactions: the next frontier in precision medicine. Trends Pharmacol. Sci. 41, 994–1005 (2020).

    CAS  PubMed  Google Scholar 

  27. Chiu, K., Warner, G., Nowak, R. A., Flaws, J. A. & Mei, W. The impact of environmental chemicals on the gut microbiome. Toxicol. Sci. 176, 253–284 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mao, Q. X. et al. The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome. Environ. Health Glob. 17, 50 (2018).

    Google Scholar 

  29. Reygner, J. et al. Inulin supplementation lowered the metabolic defects of prolonged exposure to chlorpyrifos from gestation to young adult stage in offspring rats. PLoS ONE 11, e0164614 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Yuan, X. L. et al. Gut microbiota: an underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere 227, 425–434 (2019).

    CAS  PubMed  Google Scholar 

  31. Li, X. et al. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ. Int. 126, 454–467 (2019).

    CAS  PubMed  Google Scholar 

  32. Zhai, Q. X. et al. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci. Bull. 62, 831–840 (2017).

    CAS  Google Scholar 

  33. Xue, B. et al. Low-concentration of dichloroacetonitrile (DCAN) in drinking water perturbs the health-associated gut microbiome and metabolic profile in rats. Chemosphere 258, 127067 (2020).

    CAS  PubMed  Google Scholar 

  34. Zhu, J. Q. et al. Consumption of drinking water N-nitrosamines mixture alters gut microbiome and increases the obesity risk in young male rats. Environ. Pollut. 248, 388–396 (2019).

    CAS  PubMed  Google Scholar 

  35. Coryell, M., McAlpine, M., Pinkham, N. V., McDermott, T. R. & Walk, S. T. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat. Commun. 9, 5424 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ilett, K. F., Tee, L. B. G., Reeves, P. T. & Minchin, R. F. Mebolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol. Ther. 46, 67–93 (1990).

    CAS  PubMed  Google Scholar 

  37. Harishankar, M. K., Sasikala, C. & Ramya, M. Efficiency of the intestinal bacteria in the degradation of the toxic pesticide, chlorpyrifos. 3 Biotech. 3, 137–142 (2013).

    CAS  PubMed  Google Scholar 

  38. Xu, H., Heinze, T. M., Paine, D. D., Cerniglia, C. E. & Chen, H. Sudan azo dyes and Para Red degradation by prevalent bacteria of the human gastrointestinal tract. Anaerobe 16, 114–119 (2010).

    CAS  PubMed  Google Scholar 

  39. Koppel, N., Rekdal, V. M. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2017).

    PubMed  Google Scholar 

  40. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363, eaat9931 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Roberts, M. S., Magnusson, B. M., Burczynski, F. J. & Weiss, M. Enterohepatic Circulation. Clin. Pharmacokinetics 41, 751–790 (2002).

    CAS  Google Scholar 

  42. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019). Systematic screen demonstrating that 176 human-targeted drugs can be biotransformed by gut bacterial strains and identifying responsible bacterial gene products.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Javdan, B. et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell 181, 1661–1679.e22 (2020). Systematic screen of 438 drugs showing biotransformation of 57 human-targeted drugs by faecal microbial communities.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zimmermann, M., Patil, K. R., Typas, A. & Maier, L. Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Molecular Syst. Biol. 17, e10116 (2021).

    CAS  Google Scholar 

  45. Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, L. et al. RapidAIM: a culture- and metaproteomics-based rapid assay of individual microbiome responses to drugs. Microbiome 8, 33 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Haak, B. W. et al. Long-term impact of oral vancomycin, ciprofloxacin and metronidazole on the gut microbiota in healthy humans. J. Antimicrob. Chemother. 74, 782–786 (2019).

    CAS  PubMed  Google Scholar 

  48. Rashid, M.-U. et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods. Clin. Infect. Dis. 60, S77–S84 (2015).

    CAS  PubMed  Google Scholar 

  49. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    CAS  PubMed  Google Scholar 

  50. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Investig. 124, 4212–4218 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    PubMed  Google Scholar 

  52. Kachrimanidou, M. & Tsintarakis, E. Insights into the role of human gut microbiota in clostridioides difficile infection. Microorganisms 8, 200 (2020).

    CAS  PubMed Central  Google Scholar 

  53. Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    CAS  PubMed  Google Scholar 

  54. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    CAS  PubMed  Google Scholar 

  55. Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Seeman, M. V. The gut microbiome and antipsychotic treatment response. Behav. Brain Res. 396, 112886 (2021).

    PubMed  Google Scholar 

  57. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    CAS  PubMed  Google Scholar 

  58. Weersma, R. K., Zhernakova, A. & Fu, J. Interaction between drugs and the gut microbiome. Gut 69, 1510–1519 (2020).

    CAS  PubMed  Google Scholar 

  59. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  Google Scholar 

  60. Pérez-Burillo, S., Hinojosa-Nogueira, D., Pastoriza, S. & Rufián-Henares, J. A. Plant extracts as natural modulators of gut microbiota community structure and functionality. Heliyon 6, e05474 (2020).

    PubMed  PubMed Central  Google Scholar 

  61. Peterson, C. T. et al. Effects of turmeric and curcumin dietary supplementation on human gut microbiota: a double-blind, randomized, placebo-controlled pilot study. J. Evid. Based. Integr. Med. https://doi.org/10.1177/2515690X18790725 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sun, H. et al. The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. J. Food Sci. Technol. 55, 399–407 (2018).

    CAS  PubMed  Google Scholar 

  63. Bian, X. et al. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem. Toxicol. 107, 530–539 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rodriguez-Palacios, A. et al. The artificial sweetener Splenda promotes gut proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease-like ileitis. Inflamm. Bowel Dis. 24, 1005–1020 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014). Gnotobiotic mouse model demonstrating the effects of artificial sweeteners on the development of glucose intolerance mediated by the changes in microbiota composition and metabolism.

    CAS  PubMed  Google Scholar 

  66. Wang, Q.-P., Browman, D., Herzog, H. & Neely, G. G. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS One 13, e0199080 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015). Gnotobiotic mouse model demonstrating the effects of processed food components on inflammation and metabolic-syndrome like symptoms mediated by the changes in microbiota composition.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Viennois, E., Merlin, D., Gewirtz, A. T. & Chassaing, B. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 77, 27–40 (2017).

    CAS  PubMed  Google Scholar 

  69. Chassaing, B., Van De Wiele, T., De Bodt, J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427 (2017).

    CAS  PubMed  Google Scholar 

  70. European Commission. Contaminants https://ec.europa.eu/food/safety/chemical_safety/contaminants_en (2021).

  71. European Food Safety Authority (EFSA); Medina-Pastor, P. & Triacchini, G. The 2018 European Union report on pesticide residues in food. EFSA J. 18, e06057 (2020).

  72. FDA. Pesticide Residue Monitoring Program Fiscal Year 2018 Pesticide Report 46 (2020).

  73. Department for Environment Food & Rural Affairs. The Expert Committee on Pesticide Residues in Food (PRiF) Annual Report 2020 (2021).

  74. Mesnage, R. et al. Impacts of dietary exposure to pesticides on faecal microbiome metabolism in adult twins. bioRxiv https://doi.org/10.1101/2021.06.16.448511 (2021). Metabolomic analysis of urine samples highlighting exposure to a variety of pesticides.

    Article  Google Scholar 

  75. Velmurugan, G. et al. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biol. 18, 8 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Aitbali, Y. et al. Glyphosate based-herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice. Neurotoxicol Teratol. 67, 44–49 (2018).

    CAS  PubMed  Google Scholar 

  77. Mesnage, R. et al. Use of shotgun metagenomics and metabolomics to evaluate the impact of glyphosate or roundup MON 52276 on the gut microbiota and serum metabolome of sprague-dawley rats. Environ. Health Perspect. 129, 017005 (2021).

    CAS  PubMed Central  Google Scholar 

  78. Gushgari, A. J. & Halden, R. U. Critical review of major sources of human exposure to N-nitrosamines. Chemosphere 210, 1124–1136 (2018).

    CAS  PubMed  Google Scholar 

  79. Bharate, S. S. Critical analysis of drug product recalls due to nitrosamine impurities. J. Med. Chem. 64, 2923–2936 (2021).

    CAS  PubMed  Google Scholar 

  80. FDA. Information about Nitrosamine Impurities in Medications https://www.fda.gov/drugs/drug-safety-and-availability/information-about-nitrosamine-impurities-medications#:~:text=Nitrosamine%20impurities%20may%20increase%20the,an%20increased%20risk%20of%20cancer (2021).

  81. Ha, W. S., Kim, C. K., Song, S. H. & Kang, C. B. Study on mechanism of multistep hepatotumorigenesis in rat: development of hepatotumorigenesis. J. Vet. Sci. 2, 53–58 (2001).

    CAS  PubMed  Google Scholar 

  82. Lijinsky, W. & Reuber, M. D. Dose-response study with N-nitrosodiethanolamine in F344 rats. Food Chem. Toxicol. 22, 23–26 (1984).

    CAS  PubMed  Google Scholar 

  83. Alshannaq, A. & Yu, J. H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 14, 632 (2017).

    PubMed Central  Google Scholar 

  84. Eskola, M. et al. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 60, 2773–2789 (2020).

    CAS  PubMed  Google Scholar 

  85. Guo, M. et al. Combination of metagenomics and culture-based methods to study the interaction between ochratoxin A and gut microbiota. Toxicol. Sci. 141, 314–323 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Vignal, C. et al. Chronic ingestion of deoxynivalenol at human dietary levels impairs intestinal homeostasis and gut microbiota in mice. Arch. Toxicol. 92, 2327–2338 (2018).

    CAS  PubMed  Google Scholar 

  87. Giambò, F. et al. Influence of toxic metal exposure on the gut microbiota (Review). World Acad. Sci. J. https://doi.org/10.3892/wasj.2021.90 (2021).

    Article  Google Scholar 

  88. Zackular, J. P. et al. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat. Med. 22, 1330–1334 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. EFSA. Report for 2018 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products. EFSA https://doi.org/10.2903/sp.efsa.2020.en-1775 (2020).

    Article  Google Scholar 

  90. Roca-Saavedra, P. et al. Food additives, contaminants and other minor components: effects on human gut microbiota-a review. J. Physiol. Biochem. 74, 69–83 (2018).

    CAS  PubMed  Google Scholar 

  91. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018). Systematic growth screen of 40 bacterial strains against 1,197 drugs showing growth inhibitory effects of host-targeted drugs.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239 (2013). Experimental study in worm model that demonstrates the effect of metformin on the host mediated by changes in native microbial metabolism affected by the drug.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Grimsey, E. M. et al. Chlorpromazine and amitriptyline are substrates and inhibitors of the AcrB multidrug efflux pump. mBio 11, e00465–20 (2020).

    PubMed  PubMed Central  Google Scholar 

  94. Lu, Q.-Y. et al. Prebiotic potential and chemical composition of seven culinary spice extracts. J. Food Sci. 82, 1807–1813 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Pan, H., Feng, J., He, G.-X., Cerniglia, C. E. & Chen, H. Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria. Anaerobe 18, 445–453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Crudo, F. et al. In vitro interactions of Alternaria mycotoxins, an emerging class of food contaminants, with the gut microbiota: a bidirectional relationship. Arch. Toxicol. 95, 2533–2549 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tian, Y. et al. Metabolic impact of persistent organic pollutants on gut microbiota. Gut Microbes 12, 1848209 (2020).

    PubMed Central  Google Scholar 

  98. Klünemann, M. et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 597, 533–538 (2021). Mechanistic study demonstrating bioaccumulation of human-targeted drugs by gut bacteria.

    PubMed  Google Scholar 

  99. Frame, L. A., Costa, E. & Jackson, S. A. Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature. Nutr. Rev. 78, 798–812 (2020).

    PubMed  Google Scholar 

  100. Ruiz-Ojeda, F. J., Plaza-Díaz, J., Sáez-Lara, M. J. & Gil, A. Effects of sweeteners on the gut microbiota: a review of experimental studies and clinical trials. Adv. Nutr. 10, S31–S48 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. González, T. D. J. B., Zuidema, T., Bor, G., Smidt, H. & van Passel, M. W. Study of the aminoglycoside subsistence phenotype of bacteria residing in the gut of humans and zoo animals. Front. Microbiol. 6, 1550 (2016).

    Google Scholar 

  102. Xin, Z. et al. Isolation, identification and characterization of human intestinal bacteria with the ability to utilize chloramphenicol as the sole source of carbon and energy. FEMS Microbiol. Ecol. 82, 703–712 (2012).

    CAS  PubMed  Google Scholar 

  103. Taguer, M. & Maurice, C. The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes. Clin. Pharmacology Therapeutics 99, 588–599 (2016).

    CAS  Google Scholar 

  104. Pryor, R. et al. Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell 178, 1299–1312.e29 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Anwar, S. et al. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk. J. Pharm. Biomed. Anal. 159, 100–112 (2018).

    CAS  PubMed  Google Scholar 

  106. Mirzaei, M. K. & Maurice, C. F. Ménage à trois in the human gut: interactions between host, bacteria and phages. Nat. Rev. Microbiol. 15, 397–408 (2017).

    CAS  PubMed  Google Scholar 

  107. Sutcliffe, S. G., Shamash, M., Hynes, A. P. & Maurice, C. F. Common oral medications lead to prophage induction in bacterial isolates from the human gut. Viruses 13, 455 (2021). Screen of five drugs against eight gut bacterial strains showing that medications can cause prophage induction.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Viennois, E. et al. Dietary emulsifiers directly impact adherent-invasive E. coli gene expression to drive chronic intestinal inflammation. Cell Rep. 33, 108229 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Collins, J. et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553, 291–294 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Shil, A. & Chichger, H. Artificial sweeteners negatively regulate pathogenic characteristics of two model gut bacteria, E. coli and E. faecalis. Int. J. Mol. Sci. 22, 5228 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chhabra, R. S. Intestinal absorption and metabolism of xenobiotics. Env. Health Perspect. 33, 61–69 (1979).

    CAS  Google Scholar 

  112. Scott, T. A. et al. Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans. Cell 169, 442–456.e418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. García-González, A. P. et al. Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell 169, 431–441.e8 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Md Masud Parvez, A. B. et al. Quantitative investigation of irinotecan metabolism, transport, and gut microbiome activation. Drug Metab. Dispos. 49, 683–693 (2021).

    PubMed  Google Scholar 

  115. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Artacho, A. et al. The pretreatment gut microbiome is associated with lack of response to methotrexate in new-onset rheumatoid arthritis. Arthritis Rheumatol. 73, 931–942 (2021).

    CAS  PubMed  Google Scholar 

  117. Gratz, S. W. et al. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201600680 (2017).

    Article  PubMed  Google Scholar 

  118. Daud, N. et al. Prevalent human gut bacteria hydrolyse and metabolise important food-derived mycotoxins and masked mycotoxins. Toxins 12, 654 (2020).

    CAS  PubMed Central  Google Scholar 

  119. He, Z. et al. Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metab. 33, 1358–1371.e55 (2021). Demonstration of the contribution of microbial metabolism of widely used food colorants to a common gastrointestinal disease.

    CAS  PubMed  Google Scholar 

  120. Shimada, T. & Fujii-Kuriyama, Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and1B1. Cancer Sci. 95, 1–6 (2004).

    CAS  PubMed  Google Scholar 

  121. Van de Wiele, T. et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ. Health Perspect. 113, 6–10 (2005).

    PubMed  Google Scholar 

  122. Goodson, W. H. et al. Activation of the mTOR pathway by low levels of xenoestrogens in breast epithelial cells from high-risk women. Carcinogenesis 32, 1724–1733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sauer, S. J. et al. Bisphenol A activates EGFR and ERK promoting proliferation, tumor spheroid formation and resistance to EGFR pathway inhibition in estrogen receptor-negative inflammatory breast cancer cells. Carcinogenesis 38, 252–260 (2017).

    CAS  PubMed  Google Scholar 

  124. Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 120–124 (2021).

    CAS  PubMed  Google Scholar 

  126. Farha, M. A. & Brown, E. D. Chemical probes of escherichia coli uncovered through chemical-chemical interaction profiling with compounds of known biological activity. Chem. Biol. 17, 852–862 (2010).

    CAS  PubMed  Google Scholar 

  127. Erickson, T. B. et al. “Waste not, want not” — leveraging sewer systems and wastewater-based epidemiology for drug use trends and pharmaceutical monitoring. J. Med. Toxicol. 17, 397–410 (2021).

    PubMed  PubMed Central  Google Scholar 

  128. Zeng, X. et al. MASI: microbiota–active substance interactions database. Nucleic Acids Res. 49, D776–D782 (2021).

    CAS  PubMed  Google Scholar 

  129. Aziz, R. K., Saad, R. & Rizkallah, M. R. PharmacoMicrobiomics or how bugs modulate drugs: an educational initiative to explore the effects of human microbiome on drugs. BMC Bioinformatics 12, A10 (2011).

    PubMed Central  Google Scholar 

  130. Lynch, S. V., Ng, S. C., Shanahan, F. & Tilg, H. Translating the gut microbiome: ready for the clinic? Nat. Rev. Gastroenterol. Hepatol. 16, 656–661 (2019).

    PubMed  Google Scholar 

  131. Taroncher-Oldenburg, G. et al. Translating microbiome futures. Nat. Biotechnol. 36, 1037–1042 (2018).

    CAS  PubMed  Google Scholar 

  132. Liu, X. et al. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 31, 2010918 (2021).

    CAS  Google Scholar 

  133. Mark Mimee, P. N. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.E.L. is supported by the Health Protection Research Unit in Chemical and Radiation Threats and Hazards, funded by the National Institute for Health Research (NIHR). K.R.P. and A.E.L. acknowledge funding by UK Medical Research Council (project no. MC_UU_00025/11). M.Z.-K. is supported by the postdoctoral fellowship from the AXA Research Fund. U. Hofer is acknowledged for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kiran R. Patil.

Ethics declarations

Competing interests

K.R.P. and M. Z.-K. are inventors in patent applications related to the findings and concepts discussed in this review (K.R.P.: US patent application numbers 16966307 and 16966322; M. Z.-K.: US patent application number 17257394). A.E.L. declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Filipe Cabreiro, Benoit Chassaing and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

FooDB: http://www.foodb.ca/

Supplementary information

Glossary

Organ

The human gut microbiota can be considered as an organ or supra-organ as it is essential for a wide range of functions, from digestion to immune modulation, and is thus fundamental to the host physiology.

Precision medicine

A medicinal approach whereby molecular data is used to make an optimal choice regarding therapeutic intervention in an individualized or in a stratified manner.

Xenobiotics

Compounds foreign to the human body, including drugs, pollutants, toxins, and food additives and contaminants. It has been suggested that, throughout a lifetime, an individual is exposed to around 10,000 to 100,000 different xenobiotics at varying concentrations.

Second liver

The gut microbiota is often also referred to as second liver, as it is involved in metabolic processes and can contribute to biotransformation of xenobiotics.

Alpha diversity

The diversity of microbial species/strains within an individual microbiota or within an individual sample.

Glucose tolerance

The ability of our bodies to deal with a glucose load to keep our blood glucose levels stable.

Macronutrients

Essential components of food used for the growth and/or maintenance of the constituents of the body; the main macronutrients are proteins, carbohydrates and lipids.

Micronutrients

Chemical elements essential for healthy growth and development, albeit required only in trace amounts, such as vitamins or minerals.

Dysbiosis

An imbalance in the composition of the gut microbial strains contributing to a disease state or undesirable symptoms.

Food contact material

Materials that are intended to be in contact with food such as packaging and cooking utensils.

Exo-metabolome

A set of small molecules, or metabolites, that are present extracellularly.

Phages

Phages (or bacteriophages) are viruses that can infect bacteria. Most phages in the gut replicate through incorporation of the phage genome into the bacterial genome, leading to the formation of latent prophages. Stress, such as DNA-damage or xenobiotic exposure, can induce prophages into the virulent stage, leading to viral replication and cell lysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindell, A.E., Zimmermann-Kogadeeva, M. & Patil, K.R. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat Rev Microbiol 20, 431–443 (2022). https://doi.org/10.1038/s41579-022-00681-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00681-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research