Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intracellular lifestyle of Chlamydia trachomatis and host–pathogen interactions

Abstract

In recent years, substantial progress has been made in the understanding of the intracellular lifestyle of Chlamydia trachomatis and how the bacteria establish themselves in the human host. As an obligate intracellular pathogenic bacterium with a strongly reduced coding capacity, C. trachomatis depends on the provision of nutrients from the host cell. In this Review, we summarize the current understanding of how C. trachomatis establishes its intracellular replication niche, how its metabolism functions in the host cell, how it can defend itself against the cell autonomous and innate immune response and how it overcomes adverse situations through the transition to a persistent state. In particular, we focus on those processes for which a mechanistic understanding has been achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The developmental cycle of Chlamydia trachomatis.
Fig. 2: Cell autonomous defence against Chlamydia trachomatis.
Fig. 3: Metabolic interactions between Chlamydia trachomatis and the host cell.
Fig. 4: Chlamydia trachomatis interactions with innate immune cells and chlamydial persistence.

Similar content being viewed by others

References

  1. Zhong, G. Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization. Trends Microbiol. 29, 1004–1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dzakah, E. E. et al. Chlamydia trachomatis stimulation enhances HIV-1 susceptibility through the modulation of a member of the macrophage inflammatory proteins. J. Invest. Dermatol. 142, 1338–1348.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Paavonen, J., Turzanski Fortner, R., Lehtinen, M. & Idahl, A. Chlamydia trachomatis, pelvic inflammatory disease, and epithelial ovarian cancer. J. Infect. Dis. 224, S121–S127 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, X. et al. Chlamydia trachomatis infection: their potential implication in the etiology of cervical cancer. J. Cancer 12, 4891–4900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, H., Wen, Y. & Li, Z. Clear victory for chlamydia: the subversion of host innate immunity. Front. Microbiol. 10, 1412 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang, J. P. & Stephens, R. S. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 69, 861–869 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Elwell, C., Mirrashidi, K. & Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 14, 385–400 (2016). This review summarizes the chlamydial effector proteins and how Chlamydia spp. interact with their hosts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su, H. et al. A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc. Natl Acad. Sci. USA 93, 11143–11148 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fadel, S. & Eley, A. Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV. J. Med. Microbiol. 57, 1058–1061 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, J. H., Jiang, S., Elwell, C. A. & Engel, J. N. Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog. 7, e1002285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Becker, E. & Hegemann, J. H. All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function. Microbiologyopen 3, 544–556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abromaitis, S. & Stephens, R. S. Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog. 5, e1000357 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Subbarayal, P. et al. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog. 11, e1004846 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Patel, A. L. et al. Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development. BMC Microbiol. 14, 277–277 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wyrick, P. B. et al. Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect. Immun. 57, 2378–2389 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Majeed, M. & Kihlström, E. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells. Infect. Immun. 59, 4465–4472 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Webley, W. C., Norkin, L. C. & Stuart, E. S. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1. BMC Infect. Dis. 4, 23 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gabel, B. R., Elwell, C., van Ijzendoorn, S. C. & Engel, J. N. Lipid raft-mediated entry is not required for Chlamydia trachomatis infection of cultured epithelial cells. Infect. Immun. 72, 7367–7373 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ford, C., Nans, A., Boucrot, E. & Hayward, R. D. Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog. 14, e1007051 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jewett, T. J., Fischer, E. R., Mead, D. J. & Hackstadt, T. Chlamydial TARP is a bacterial nucleator of actin. Proc. Natl Acad. Sci. USA 103, 15599–15604 (2006). This study shows interaction of TarP with actin and provides insight into the regulation of actin dynamics by TarP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hower, S., Wolf, K. & Fields, K. A. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol. Microbiol. 72, 1423–1437 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Thalmann, J. et al. Actin re-organization induced by Chlamydia trachomatis serovar D — evidence for a critical role of the effector protein CT166 targeting Rac. PLoS ONE 5, e9887 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Keb, G. et al. Chlamydia trachomatis TmeA directly activates N-WASP to promote actin polymerization and functions synergistically with TarP during invasion. mBio 12, e02861-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Faris, R., McCullough, A., Andersen, S. E., Moninger, T. O. & Weber, M. M. The Chlamydia trachomatis secreted effector TmeA hijacks the N-WASP-ARP2/3 actin remodeling axis to facilitate cellular invasion. PLoS Pathog. 16, e1008878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, Y. S. et al. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. PLoS Pathog. 10, e1003954 (2014). This study provides a model of the regulation and function of early T3SS effectors to establish the chlamydial inclusion.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stallmann, S. & Hegemann, J. H. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry. Cell Microbiol. 18, 761–775 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Omsland, A., Sager, J., Nair, V., Sturdevant, D. E. & Hackstadt, T. Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium. Proc. Natl Acad. Sci. USA 109, 19781–19785 (2012). This study reveals G6P and ATP as different energy sources for elementary bodies and reticulate bodies, respectively, in axenic medium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haider, S. et al. Raman microspectroscopy reveals long-term extracellular activity of Chlamydiae. Mol. Microbiol. 77, 687–700 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Rajeeve, K. et al. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis. Nat. Microbiol. 5, 1390–1402 (2020). This study is the first to show that glutamine is a central metabolite for cell wall biosynthesis, and that host cell glutamine metabolic reprogramming is required for chlamydial development.

    Article  CAS  PubMed  Google Scholar 

  30. Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014). This study is the first to show that C. trachomatis has peptidoglycan using click chemistry.

    Article  CAS  PubMed  Google Scholar 

  31. Jacquier, N., Viollier, P. H. & Greub, G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol. Rev. 39, 262–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Ouellette, S. P., Lee, J. & Cox, J. V. Division without binary fission: cell division in the FtsZ-less Chlamydia. J. Bacteriol. 202, e00252-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Barry, C. E. III, Hayes, S. F. & Hackstadt, T. Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science 256, 377–379 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Hackstadt, T., Baehr, W. & Ying, Y. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc. Natl Acad. Sci. USA 88, 3937–3941 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pedersen, L. B., Birkelund, S. & Christiansen, G. Interaction of the Chlamydia trachomatis histone H1-like protein (Hc1) with DNA and RNA causes repression of transcription and translation in vitro. Mol. Microbiol. 11, 1085–1098 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Grieshaber, N. A. et al. Identification of the base-pairing requirements for repression of hctA translation by the small RNA IhtA leads to the discovery of a new mRNA target in Chlamydia trachomatis. PLoS ONE 10, e0116593 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Christensen, S., McMahon, R. M., Martin, J. L. & Huston, W. M. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit. Rev. Microbiol. 45, 33–50 (2019).

    Article  PubMed  Google Scholar 

  38. Wilson, D. P., Whittum-Hudson, J. A., Timms, P. & Bavoil, P. M. Kinematics of intracellular chlamydiae provide evidence for contact-dependent development. J. Bacteriol. 191, 5734–5742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rank, R. G., Whittimore, J., Bowlin, A. K. & Wyrick, P. B. In vivo ultrastructural analysis of the intimate relationship between polymorphonuclear leukocytes and the chlamydial developmental cycle. Infect. Immun. 79, 3291–3301 (2011). This study uses a mouse model with C. muridarum infection to show that PMNs can invade Chlamydia-infected epithelial cells in vivo and dislodge those cells from the epithelium despite their phagocytic and NETotic properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, J. K. et al. Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis. Nat. Commun. 9, 45 (2018). This study provides evidence that reticulate body size regulates the timing of the reticulate body to elementary body conversion.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pal, R. R. et al. Pathogenic E. coli extracts nutrients from infected host cells utilizing injectisome components. Cell 177, 683–696.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Kumar, Y. & Valdivia, R. H. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4, 159–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bastidas, R. J., Elwell, C. A., Engel, J. N. & Valdivia, R. H. Chlamydial intracellular survival strategies. Cold Spring Harb. Perspect. Med. 3, a010256 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Subtil, A. & Hayward, R. D. Protein Secretion in Chlamydia. in Chlamydia Biology: From Genome to Disease (eds Tan, M., Hegemann, J. H. & Sütterlin, C.) 151–176 (Caister Academic, 2020).

  45. Scidmore, M. A., Rockey, D. D., Fischer, E. R., Heinzen, R. A. & Hackstadt, T. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect. Immun. 64, 5366–5372 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scidmore, M. A., Fischer, E. R. & Hackstadt, T. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect. Immun. 71, 973–984 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Ooij, C., Apodaca, G. & Engel, J. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. Infect. Immun. 65, 758–766 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weber, M. M. et al. A functional core of IncA is required for Chlamydia trachomatis inclusion fusion. J. Bacteriol. 198, 1347–1355 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ronzone, E. et al. An α-helical core encodes the dual functions of the chlamydial protein IncA. J. Biol. Chem. 289, 33469–33480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Geisler, W. M., Suchland, R. J., Rockey, D. D. & Stamm, W. E. Epidemiology and clinical manifestations of unique Chlamydia trachomatis isolates that occupy nonfusogenic inclusions. J. Infect. Dis. 184, 879–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Derre, I., Swiss, R. & Agaisse, H. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER–Chlamydia inclusion membrane contact sites. PLoS Pathog. 7, e1002092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stanhope, R., Flora, E., Bayne, C. & Derre, I. IncV, a FFAT motif-containing Chlamydia protein, tethers the endoplasmic reticulum to the pathogen-containing vacuole. Proc. Natl Acad. Sci. USA 114, 12039–12044 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goetz, R. et al. Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy. Nat. Commun. 11, 6173 (2020).

    Article  CAS  Google Scholar 

  54. Matsumoto, A. Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci. J. Bacteriol. 145, 605–612 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mirrashidi, K. M. et al. Global mapping of the Inc-human interactome reveals that retromer restricts Chlamydia infection. Cell Host Microbe 18, 109–121 (2015). This study reports the first large-scale interaction screen of chlamydial Incs and host proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Schwoppe, C., Winkler, H. H. & Neuhaus, H. E. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J. Bacteriol. 184, 2108–2115 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gehre, L. et al. Sequestration of host metabolism by an intracellular pathogen. eLife 5, e12552 (2016). This study provides the first evidence that chlamydial enzymes orchestrating glycogen metabolism are secreted into the vacuole lumen through type III secretion.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Weiss, E. Transaminase activity and other enzymatic reactions involving pyruvate and glutamate in Chlamydia (psittacosis–trachoma group). J. Bacteriol. 93, 177–184 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mehlitz, A. et al. Metabolic adaptation of Chlamydia trachomatis to mammalian host cells. Mol. Microbiol. 103, 1004–1019 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Hackstadt, T., Rockey, D. D., Heinzen, R. A. & Scidmore, M. A. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 15, 964–977 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carabeo, R. A., Mead, D. J. & Hackstadt, T. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc. Natl Acad. Sci. USA 100, 6771–6776 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wylie, J. L., Hatch, G. M. & McClarty, G. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol. 179, 7233–7242 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heuer, D. et al. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457, 731–735 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Beatty, W. L. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J. Cell Sci. 119, 350–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Cocchiaro, J. L., Kumar, Y., Fischer, E. R., Hackstadt, T. & Valdivia, R. H. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc. Natl Acad. Sci. USA 105, 9379–9384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pokorzynski, N. D., Thompson, C. C. & Carabeo, R. A. Ironing out the unconventional mechanisms of iron acquisition and gene regulation in Chlamydia. Front. Cell Infect. Microbiol. 7, 394 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rother, M. et al. Combined human genome-wide RNAi and metabolite analyses identify IMPDH as a host-directed target against Chlamydia infection. Cell Host Microbe 23, 661–671.e8 (2018). The study reports the first human genome-wide RNA interference screen to identify host factors required for chlamydial growth.

    Article  CAS  PubMed  Google Scholar 

  69. Asgari, Y., Zabihinpour, Z., Salehzadeh-Yazdi, A., Schreiber, F. & Masoudi-Nejad, A. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation. Genomics 105, 275–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Gonzalez, E. et al. Chlamydia infection depends on a functional MDM2–p53 axis. Nat. Commun. 5, 5201 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Siegl, C., Prusty, B. K., Karunakaran, K., Wischhusen, J. & Rudel, T. Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection. Cell Rep. 9, 918–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Chowdhury, S. R. et al. Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission. J. Cell Biol. 216, 1071–1089 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sarin, M. et al. Alterations in c-Myc phenotypes resulting from dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Cell Death Dis. 4, e670 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Frank, S. et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Finethy, R. & Coers, J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol. Rev. 40, 875–893 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Darville, T. et al. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J. Immunol. 171, 6187–6197 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. O’Connell, C. M., Ionova, I. A., Quayle, A. J., Visintin, A. & Ingalls, R. R. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J. Biol. Chem. 281, 1652–1659 (2006).

    Article  PubMed  Google Scholar 

  78. Bas, S. et al. The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J. Immunol. 180, 1158–1168 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Massari, P., Toussi, D. N., Tifrea, D. F. & de la Maza, L. M. Toll-like receptor 2-dependent activity of native major outer membrane protein proteosomes of Chlamydia trachomatis. Infect. Immun. 81, 303–310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, Y. et al. Chlamydial lipoproteins stimulate toll-like receptors 1/2 mediated inflammatory responses through MyD88-dependent pathway. Front. Microbiol. 8, 78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bulut, Y. et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168, 1435–1440 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Vabulas, R. M. et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276, 31332–31339 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, C. et al. Chlamydia trachomatis lipopolysaccharide evades the canonical and noncanonical inflammatory pathways to subvert innate immunity. mBio 10, e00595-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rund, S., Lindner, B., Brade, H. & Holst, O. Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2. J. Biol. Chem. 274, 16819–16824 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Zhou, H. et al. PORF5 plasmid protein of Chlamydia trachomatis induces MAPK-mediated pro-inflammatory cytokines via TLR2 activation in THP-1 cells. Sci. China Life Sci. 56, 460–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Sun, Z. et al. Chlamydia trachomatis glycogen synthase promotes MAPK-mediated proinflammatory cytokine production via TLR2/TLR4 in THP-1 cells. Life Sci. 271, 119181 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, Y. et al. The DNA sensor, cyclic GMP–AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection. J. Immunol. 193, 2394–2404 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Barker, J. R. et al. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 4, e00018-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fields, K. A. & Hackstadt, T. The chlamydial inclusion: escape from the endocytic pathway. Annu. Rev. Cell Dev. Biol. 18, 221–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Damiani, M. T., Gambarte Tudela, J. & Capmany, A. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Cell Microbiol. 16, 1329–1338 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Haldar, A. K. et al. Chlamydia trachomatis is resistant to inclusion ubiquitination and associated host defense in γ interferon-primed human epithelial cells. mBio 7, e01417-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Al-Younes, H. M., Brinkmann, V. & Meyer, T. F. Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway. Infect. Immun. 72, 4751–4762 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Auer, D., Huegelschaeffer, S. D., Fischer, A. B. & Rudel, T. The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion. Cell Microbiol. 22, e13136 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Weber, M. M. et al. Absence of specific Chlamydia trachomatis inclusion membrane proteins triggers premature inclusion membrane lysis and host cell death. Cell Rep. 19, 1406–1417 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boehme, L., Albrecht, M., Riede, O. & Rudel, T. Chlamydia trachomatis-infected host cells resist dsRNA-induced apoptosis. Cell Microbiol. 12, 1340–1351 (2010).

    Article  Google Scholar 

  96. Fan, T. et al. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187, 487–496 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Greene, W., Xiao, Y., Huang, Y., McClarty, G. & Zhong, G. Chlamydia-infected cells continue to undergo mitosis and resist induction of apoptosis. Infect. Immun. 72, 451–460 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhong, Y., Weininger, M., Pirbhai, M., Dong, F. & Zhong, G. Inhibition of staurosporine-induced activation of the proapoptotic multidomain Bcl-2 proteins Bax and Bak by three invasive chlamydial species. J. Infect. 53, 408–414 (2006).

    Article  PubMed  Google Scholar 

  99. Ying, S. et al. Premature apoptosis of Chlamydia-infected cells disrupts chlamydial development. J. Infect. Dis. 198, 1536–1544 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Sixt, B. S., Nunez-Otero, C., Kepp, O., Valdivia, R. H. & Kroemer, G. Chlamydia trachomatis fails to protect its growth niche against pro-apoptotic insults. Cell Death Differ. 26, 1485–1500 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Sharma, M. & Rudel, T. Apoptosis resistance in Chlamydia-infected cells: a fate worse than death? FEMS Immunol. Med. Microbiol. 55, 154–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Verbeke, P. et al. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2, e45 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Scidmore, M. A. & Hackstadt, T. Mammalian 14-3-3β associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol. Microbiol. 39, 1638–1650 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Rajalingam, K. et al. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells. PLoS ONE 3, e3102 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fischer, A. et al. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. eLife 6, e21465 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kun, D., Xiang-Lin, C., Ming, Z. & Qi, L. Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway. Apoptosis 18, 1083–1092 (2013).

    Article  PubMed  Google Scholar 

  107. Waguia Kontchou, C. et al. Chlamydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak. Cell Death Differ. 29, 2046–2059 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Luo, F. et al. Antiapoptotic activity of Chlamydia trachomatis Pgp3 protein involves activation of the ERK1/2 pathway mediated by upregulation of DJ-1 protein. Pathog. Dis. 77, ftaa003 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Sixt, B. S. et al. The Chlamydia trachomatis inclusion membrane protein CpoS counteracts STING-mediated cellular surveillance and suicide programs. Cell Host Microbe 21, 113–121 (2017). This study reveals the importance of the chlamydial protein CpoS to prevent cell death induced via the STING pathway.

    Article  CAS  PubMed  Google Scholar 

  110. Webster, S. J. et al. Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection. PLoS Pathog. 13, e1006383 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Abdul-Sater, A. A., Koo, E., Hacker, G. & Ojcius, D. M. Inflammasome-dependent caspase-1 activation in cervical epithelial cells stimulates growth of the intracellular pathogen Chlamydia trachomatis. J. Biol. Chem. 284, 26789–26796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kiviat, N. B. et al. Histopathology of endocervical infection caused by Chlamydia trachomatis, herpes simplex virus, Trichomonas vaginalis, and Neisseria gonorrhoeae. Hum. Pathol. 21, 831–837 (1990).

    Article  CAS  PubMed  Google Scholar 

  113. Tauber, A. I., Pavlotsky, N., Lin, J. S. & Rice, P. A. Inhibition of human neutrophil NADPH oxidase by Chlamydia serovars E, K, and L2. Infect. Immun. 57, 1108–1112 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tosi, M. F. & Hammerschlag, M. R. Chlamydia trachomatis selectively stimulates myeloperoxidase release but not superoxide production by human neutrophils. J. Infect. Dis. 158, 457–460 (1988).

    Article  CAS  PubMed  Google Scholar 

  115. Rajeeve, K., Das, S., Prusty, B. K. & Rudel, T. Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response. Nat. Microbiol. 3, 824–835 (2018). This study is the first to show that the secreted CPAF directly inactivates the anti-chlamydial response in neutrophils.

    Article  CAS  PubMed  Google Scholar 

  116. Yang, C. et al. Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor. Nat. Commun. 12, 5454 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yong, E. C., Chi, E. Y., Chen, W. J. & Kuo, C. C. Degradation of Chlamydia trachomatis in human polymorphonuclear leukocytes: an ultrastructural study of peroxidase-positive phagolysosomes. Infect. Immun. 53, 427–431 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yong, E. C., Klebanoff, S. J. & Kuo, C. C. Toxic effect of human polymorphonuclear leukocytes on Chlamydia trachomatis. Infect. Immun. 37, 422–426 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Register, K. B., Davis, C. H., Wyrick, P. B., Shafer, W. M. & Spitznagel, J. K. Nonoxidative antimicrobial effects of human polymorphonuclear leukocyte granule proteins on Chlamydia spp. in vitro. Infect. Immun. 55, 2420–2427 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Register, K. B., Morgan, P. A. & Wyrick, P. B. Interaction between Chlamydia spp. and human polymorphonuclear leukocytes in vitro. Infect. Immun. 52, 664–670 (1986). This is the first study showing that Chlamydia spp. can survive and remain infectious after neutrophil phagocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Patton, D. L. & Kuo, C. C. Histopathology of Chlamydia trachomatis salpingitis after primary and repeated reinfections in the monkey subcutaneous pocket model. J. Reprod. Fertil. 85, 647–656 (1989).

    Article  CAS  PubMed  Google Scholar 

  122. Agrawal, T., Bhengraj, A. R., Vats, V., Salhan, S. & Mittal, A. Expression of TLR 2, TLR 4 and iNOS in cervical monocytes of Chlamydia trachomatis-infected women and their role in host immune response. Am. J. Reprod. Immunol. 66, 534–543 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Lausen, M., Christiansen, G., Bouet Guldbaek Poulsen, T. & Birkelund, S. Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection. Microbes Infect. 21, 73–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Zuck, M., Ellis, T., Venida, A. & Hybiske, K. Extrusions are phagocytosed and promote Chlamydia survival within macrophages. Cell Microbiol. 19, e12683 (2017).

    Article  Google Scholar 

  125. Manor, E. & Sarov, I. Fate of Chlamydia trachomatis in human monocytes and monocyte-derived macrophages. Infect. Immun. 54, 90–95 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yong, E. C., Chi, E. Y. & Kuo, C. C. Differential antimicrobial activity of human mononuclear phagocytes against the human biovars of Chlamydia trachomatis. J. Immunol. 139, 1297–1302 (1987).

    Article  CAS  PubMed  Google Scholar 

  127. Koehler, L. et al. Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes. Microb. Pathog. 22, 133–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Bard, J. & Levitt, D. Chlamydia trachomatis (L2 serovar) binds to distinct subpopulations of human peripheral blood leukocytes. Clin. Immunol. Immunopathol. 38, 150–160 (1986).

    Article  CAS  PubMed  Google Scholar 

  129. Datta, B., Njau, F., Thalmann, J., Haller, H. & Wagner, A. D. Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells. BMC Microbiol. 14, 209 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hadfield, T. L., Lamy, Y. & Wear, D. J. Demonstration of Chlamydia trachomatis in inguinal lymphadenitis of lymphogranuloma venereum: a light microscopy, electron microscopy and polymerase chain reaction study. Mod. Pathol. 8, 924–929 (1995).

    CAS  PubMed  Google Scholar 

  131. Yeung, A. T. Y. et al. Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis. Nat. Commun. 8, 15013 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tietzel, I., Quayle, A. J. & Carabeo, R. A. Alternatively activated macrophages are host cells for Chlamydia trachomatis and reverse anti-chlamydial classically activated macrophages. Front. Microbiol. 10, 919 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yasir, M., Pachikara, N. D., Bao, X., Pan, Z. & Fan, H. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Infect. Immun. 79, 4019–4028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sun, H. S. et al. Chlamydia trachomatis vacuole maturation in infected macrophages. J. Leukoc. Biol. 92, 815–827 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Coutinho-Silva, R. et al. Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19, 403–412 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Al-Zeer, M. A., Al-Younes, H. M., Lauster, D., Abu Lubad, M. & Meyer, T. F. Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNγ-inducible guanylate binding proteins. Autophagy 9, 50–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Abdul-Sater, A. A., Said-Sadier, N., Padilla, E. V. & Ojcius, D. M. Chlamydial infection of monocytes stimulates IL-1β secretion through activation of the NLRP3 inflammasome. Microbes Infect. 12, 652–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xavier, A., Al-Zeer, M. A., Meyer, T. F. & Daumke, O. hGBP1 coordinates Chlamydia restriction and inflammasome activation through sequential GTP hydrolysis. Cell Rep. 31, 107667 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Chen, B., Stout, R. & Campbell, W. F. Nitric oxide production: a mechanism of Chlamydia trachomatis inhibition in interferon-γ-treated RAW264.7 cells. FEMS Immunol. Med. Microbiol. 14, 109–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Hogan, R. J., Mathews, S. A., Mukhopadhyay, S., Summersgill, J. T. & Timms, P. Chlamydial persistence: beyond the biphasic paradigm. Infect. Immun. 72, 1843–1855 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bavoil, P. M. What’s in a word: the use, misuse, and abuse of the word “persistence” in Chlamydia biology. Front. Cell Infect. Microbiol. 4, 27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Muramatsu, M. K. et al. Beyond tryptophan synthase: identification of genes that contribute to Chlamydia trachomatis survival during γ interferon-induced persistence and reactivation. Infect. Immun. 84, 2791–2801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ouellette, S. P. et al. Global transcriptional upregulation in the absence of increased translation in Chlamydia during IFNγ-mediated host cell tryptophan starvation. Mol. Microbiol. 62, 1387–1401 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Batteiger, B. E. Chlamydia infection and epidemiology. in Intracellular Pathogens I: Chlamydiales (eds. Tan, M. & Bavoil, P. M.) 1–26 (Wiley, 2012).

  145. Schoborg, R. V. Chlamydia persistence — a tool to dissect chlamydia–host interactions. Microbes Infect. 13, 649–662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Brockett, M. R., Liechti, G. W. & Roy, C. R. Persistence alters the interaction between Chlamydia trachomatis and its host cell. Infect. Immun. 89, e00685-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367–382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wyrick, P. B. Chlamydia trachomatis persistence in vitro: an overview. J. Infect. Dis. 201, S88–S95 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Raulston, J. E. Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect. Immun. 65, 4539–4547 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tamura, A. & Manire, G. P. Effect of penicillin on the multiplication of meningopneumonitis organisms (Chlamydia psittaci). J. Bacteriol. 96, 875–880 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Panzetta, M. E., Valdivia, R. H. & Saka, H. A. Chlamydia persistence: a survival strategy to evade antimicrobial effects in-vitro and in-vivo. Front. Microbiol. 9, 3101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Shima, K. et al. Regulation of the mitochondrion–fatty acid axis for the metabolic reprogramming of Chlamydia trachomatis during treatment with β-lactam antimicrobials. mBio 12, e00023-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Shima, K. et al. Interferon-γ interferes with host cell metabolism during intracellular Chlamydia trachomatis infection. Cytokine 112, 95–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Gerard, H. C. et al. Viability and gene expression in Chlamydia trachomatis during persistent infection of cultured human monocytes. Med. Microbiol. Immunol. 187, 115–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Deka, S. et al. Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol. 8, 149–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Beatty, W. L., Belanger, T. A., Desai, A. A., Morrison, R. P. & Byrne, G. I. Tryptophan depletion as a mechanism of γ interferon-mediated chlamydial persistence. Infect. Immun. 62, 3705–3711 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Aiyar, A. et al. Influence of the tryptophan–indole–IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections. Front. Cell Infect. Microbiol. 4, 72 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Østergaard, O. et al. Quantitative protein profiling of Chlamydia trachomatis growth forms reveals defense strategies against tryptophan starvation. Mol. Cell Proteom. 15, 3540–3550 (2016).

    Article  Google Scholar 

  159. Ziklo, N., Huston, W. M., Taing, K., Katouli, M. & Timms, P. In vitro rescue of genital strains of Chlamydia trachomatis from interferon-γ and tryptophan depletion with indole-positive, but not indole-negative Prevotella spp. BMC Microbiol. 16, 286 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Belland, R. J. et al. Transcriptome analysis of chlamydial growth during IFN-γ-mediated persistence and reactivation. Proc. Natl Acad. Sci. USA 100, 15971–15976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rosario, C. J. & Tan, M. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes. Mol. Microbiol. 84, 1097–1107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Belland, R. J. et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. USA 100, 8478–8483 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Borel, N. et al. Evidence for persistent Chlamydia pneumoniae infection of human coronary atheromas. Atherosclerosis 199, 154–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Pospischil, A., Borel, N., Chowdhury, E. H. & Guscetti, F. Aberrant chlamydial developmental forms in the gastrointestinal tract of pigs spontaneously and experimentally infected with Chlamydia suis. Vet. Microbiol. 135, 147–156 (2009).

    Article  PubMed  Google Scholar 

  165. Phillips-Campbell, R., Kintner, J. & Schoborg, R. V. Induction of the Chlamydia muridarum stress/persistence response increases azithromycin treatment failure in a murine model of infection. Antimicrob. Agents Chemother. 58, 1782–1784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lewis, M. E. et al. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns. Front. Cell Infect. Microbiol. 4, 71 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Suchland, R. J., Dimond, Z. E., Putman, T. E. & Rockey, D. D. Demonstration of persistent infections and genome stability by whole-genome sequencing of repeat-positive, same-serovar Chlamydia trachomatis collected from the female genital tract. J. Infect. Dis. 215, 1657–1665 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Somboonna, N. et al. Clinical persistence of Chlamydia trachomatis sexually transmitted strains involves novel mutations in the functional αββα tetramer of the tryptophan synthase operon. mBio 10, e01464-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Roth, A. et al. Hypoxia abrogates antichlamydial properties of IFN-γ in human fallopian tube cells in vitro and ex vivo. Proc. Natl Acad. Sci. USA 107, 19502–19507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hybiske, K. & Stephens, R. S. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl Acad. Sci. USA 104, 11430–11435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rasmussen, S. J. et al. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Invest. 99, 77–87 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Faris, R. et al. Chlamydia trachomatis serovars drive differential production of proinflammatory cytokines and chemokines depending on the type of cell infected. Front. Cell Infect. Microbiol. 9, 399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dessus-Babus, S., Knight, S. T. & Wyrick, P. B. Chlamydial infection of polarized HeLa cells induces PMN chemotaxis but the cytokine profile varies between disseminating and non-disseminating strains. Cell Microbiol. 2, 317–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Buchholz, K. R. & Stephens, R. S. Activation of the host cell proinflammatory interleukin-8 response by Chlamydia trachomatis. Cell Microbiol. 8, 1768–1779 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Porcella, S. F. et al. Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis. Infect. Immun. 83, 534–543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Brokatzky, D. et al. A non-death function of the mitochondrial apoptosis apparatus in immunity. EMBO J. 38, e100907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Morrison, S. G. & Morrison, R. P. In situ analysis of the evolution of the primary immune response in murine Chlamydia trachomatis genital tract infection. Infect. Immun. 68, 2870–2879 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kiviat, N. B. et al. Cytologic manifestations of cervical and vaginal infections. I. Epithelial and inflammatory cellular changes. JAMA 253, 989–996 (1985).

    Article  CAS  PubMed  Google Scholar 

  179. Schott, B. H. et al. Modeling of variables in cellular infection reveals CXCL10 levels are regulated by human genetic variation and the Chlamydia-encoded CPAF protease. Sci. Rep. 10, 18269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Azenabor, A. A. & York, J. Chlamydia trachomatis evokes a relative anti-inflammatory response in a free Ca2+ dependent manner in human macrophages. Comp. Immunol. Microbiol. Infect. Dis. 33, 513–528 (2010).

    Article  PubMed  Google Scholar 

  181. Grayston, J. T., Wang, S. P., Yeh, L. J. & Kuo, C. C. Importance of reinfection in the pathogenesis of trachoma. Rev. Infect. Dis. 7, 717–725 (1985).

    Article  CAS  PubMed  Google Scholar 

  182. Stephens, R. S. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol. 11, 44–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Liu, S. et al. Variable persister gene interactions with (p)ppGpp for persister formation in Escherichia coli. Front. Microbiol. 8, 1795 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Wu, Y., Vulic, M., Keren, I. & Lewis, K. Role of oxidative stress in persister tolerance. Antimicrob. Agents Chemother. 56, 4922–4926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Amato, S. M. et al. The role of metabolism in bacterial persistence. Front. Microbiol. 5, 70 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Eisenreich, W., Rudel, T., Heesemann, J. & Goebel, W. Link between antibiotic persistence and antibiotic resistance in bacterial pathogens. Front. Cell Infect. Microbiol. 12, 900848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Demuth for his excellent support in the production of the figure drafts and revision of the manuscript. This work was funded, in part, by the GRK 2157 ‘3D-Infect’, and the European Research Council (grant no. ERC-2018-ADG/NCI-CAD) to T.R.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. T.R. contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Thomas Rudel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Johannes Hegemann and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stelzner, K., Vollmuth, N. & Rudel, T. Intracellular lifestyle of Chlamydia trachomatis and host–pathogen interactions. Nat Rev Microbiol 21, 448–462 (2023). https://doi.org/10.1038/s41579-023-00860-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00860-y

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology