Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial and temporal scales of dopamine transmission

Abstract

Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modes of chemical transmission.
Fig. 2: Measurements of dopamine transmission.
Fig. 3: Sparse dopamine release sites.
Fig. 4: Dopamine neuron firing and release.
Fig. 5: Dopamine receptor organization and activation.
Fig. 6: The domain-overlap model.

Similar content being viewed by others

References

  1. Grillner, S. & Robertson, B. The basal ganglia over 500 million years. Curr. Biol. 26, R1088–R1100 (2016).

    CAS  PubMed  Google Scholar 

  2. Sawin, E. R., Ranganathan, R. & Horvitz, H. R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619–631 (2000).

    CAS  PubMed  Google Scholar 

  3. Surmeier, D. J., Graves, S. M. & Shen, W. Dopaminergic modulation of striatal networks in health and Parkinson’s disease. Curr. Opin. Neurobiol. 29, 109–117 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Grace, A. A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gershman, S. J. & Uchida, N. Believing in dopamine. Nat. Rev. Neurosci. 20, 703–714 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Berke, J. D. What does dopamine mean? Nat. Neurosci. 21, 787–793 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, C. & Kaeser, P. S. Mechanisms and regulation of dopamine release. Curr. Opin. Neurobiol. 57, 46–53 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sulzer, D., Cragg, S. J. & Rice, M. E. Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia 6, 123–148 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Carlsson, A. [On the problem of the mechanism of action of some psychopharmaca]. Psychiatr. Neurol. 140, 220–222 (1960).

    CAS  Google Scholar 

  10. Carlsson, A. A paradigm shift in brain research. Science 294, 1021–1024 (2001).

    CAS  PubMed  Google Scholar 

  11. Nirenberg, M. J., Vaughan, R. A., Uhl, G. R., Kuhar, M. J. & Pickel, V. M. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J. Neurosci. 16, 436–447 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sesack, S., Aoki, C. & Pickel, V. Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J. Neurosci. 14, 88–106 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Uchigashima, M., Ohtsuka, T., Kobayashi, K. & Watanabe, M. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures. Proc. Natl Acad. Sci. USA 113, 201514074 (2016). Dopamine axons can make synaptic contacts with MSNs but dopamine receptors seem to be excluded from the postsynaptic areas.

    Google Scholar 

  14. Yung, K. K. et al. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65, 709–730 (1995).

    CAS  PubMed  Google Scholar 

  15. Missale, C., Nash, S. R. S., Robinson, S. W., Jaber, M. & Caron, M. G. Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225 (1998).

    CAS  PubMed  Google Scholar 

  16. Marcott, P. F., Mamaligas, A. A. & Ford, C. P. Phasic dopamine release drives rapid activation of striatal D2-receptors. Neuron 84, 164–176 (2014). Striatal D2 receptors are rapidly activated by action potential-triggered dopamine release and require high dopamine concentrations for saturation, establishing a functional low-affinity state.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, C., Kershberg, L., Wang, J., Schneeberger, S. & Kaeser, P. S. Dopamine secretion is mediated by sparse active zone-like release sites. Cell 172, 706–718 (2018). Striatal dopamine release is fast and only occurs in the subset of varicosities that contain active zone-like release sites defined by RIM.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pereira, D. B. et al. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nat. Neurosci. 19, 578–586 (2016). Only a small fraction of the dopamine varicosities efficiently release fluorescent false neurotransmitters, indicating that only this subset is release-competent.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Iino, Y. et al. Dopamine D2 receptors in discrimination learning and spine enlargement. Nature 579, 555–560 (2020).

    CAS  PubMed  Google Scholar 

  20. Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. da Silva, J. A., Tecuapetla, F., Paixao, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018). References 20 and 21 indicate that dopamine modulates motor action and reward with sub-second precision.

    PubMed  Google Scholar 

  22. Beyene, A. G. et al. Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor. Sci. Adv. 5, eaaw3108 (2019). The generation and use of improved nanotube dopamine sensors reveal that striatal dopamine release occurs at small, sparse hotspots.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwerdt, H. N. et al. Long-term dopamine neurochemical monitoring in primates. Proc. Natl Acad. Sci. USA 114, 13260–13265 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Menegas, W., Akiti, K., Amo, R., Uchida, N. & Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. 21, 1421–1430 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tecuapetla, F., Jin, X., Lima, S. Q. & Costa, R. M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166, 703–715 (2016).

    CAS  PubMed  Google Scholar 

  27. Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lebedev, A. V. et al. Effects of daily L-DOPA administration on learning and brain structure in older adults undergoing cognitive training: a randomised clinical trial. Sci. Rep. 10, 5227 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cools, R. Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci. Biobehav. Rev. 30, 1–23 (2006).

    CAS  PubMed  Google Scholar 

  30. Beeler, J. A. et al. Dopamine-dependent motor learning: insight into levodopa’s long-duration response. Ann. Neurol. 67, 639–647 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Frank, M. J. By carrot or by stick: cognitive reinforcement learning in Parkinsonism. Science 306, 1940–1943 (2004).

    CAS  PubMed  Google Scholar 

  32. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  PubMed  Google Scholar 

  33. Mohebi, A. et al. Dissociable dopamine dynamics for learning and motivation. Nature 570, 65–70 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferris, M. J. et al. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc. Natl Acad. Sci. USA 111, E2751–E2759 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hamid, A. A., Frank, M. J. & Moore, C. I. Dopamine waves as a mechanism for spatiotemporal credit assignment. bioRxiv https://doi.org/10.1101/729640 (2019).

    Article  Google Scholar 

  36. Maimon, G. Parietal area 5 and the initiation of self-timed movements versus simple reactions. J. Neurosci. 26, 2487–2498 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616.e25 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Marcott, P. F. et al. Regional heterogeneity of D2-receptor signaling in the dorsal striatum and nucleus accumbens. Neuron 98, 575–587.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Banerjee, A., Lee, J., Nemcova, P., Liu, C. & Kaeser, P. S. Synaptotagmin-1 is the Ca2+ sensor for fast striatal dopamine release. eLife 9, e58359 (2020). Synaptotagmin 1 is the main fast Ca2+ sensor for synchronous dopamine release in the striatum, and supplementary Ca2+ sensors may mediate additional release modes.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Banerjee, A. et al. Molecular and functional architecture of striatal dopamine release sites. bioRxiv https://doi.org/10.1101/2020.11.25.398255 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Descarries, L., Watkins, K. C., Garcia, S., Bosler, O. & Doucet, G. Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: a quantitative autoradiographic and immunocytochemical analysis. J. Comp. Neurol. 375, 167–186 (1996).

    CAS  PubMed  Google Scholar 

  43. Freund, T. F., Powell, J. F. & Smith, A. D. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13, 1189–1215 (1984).

    CAS  PubMed  Google Scholar 

  44. Descarries, L. & Mechawar, N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog. Brain Res. 125, 27–47 (2000).

    CAS  PubMed  Google Scholar 

  45. Fon, E. A. et al. Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19, 1271–1283 (1997).

    CAS  PubMed  Google Scholar 

  46. Tritsch, N. X. & Sabatini, B. L. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nirenberg, M. J., Chan, J., Liu, Y., Edwards, R. H. & Pickel, V. M. Ultrastructural localization of the vesicular monoamine transporter-2 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine. J. Neurosci. 16, 4135–4145 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gantz, S. C., Bunzow, J. R. & Williams, J. T. Spontaneous inhibitory synaptic currents mediated by a G protein-coupled receptor. Neuron 78, 807–812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kress, G. J. et al. Fast phasic release properties of dopamine studied with a channel biosensor. J. Neurosci. 34, 11792–11802 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Borisovska, M., Bensen, A. L., Chong, G. & Westbrook, G. L. Distinct modes of dopamine and GABA release in a dual transmitter neuron. J. Neurosci. 33, 1790–1796 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Staal, R. G., Mosharov, E. V. & Sulzer, D. Dopamine neurons release transmitter via a flickering fusion pore. Nat. Neurosci. 7, 341–346 (2004).

    CAS  PubMed  Google Scholar 

  52. Tritsch, N. X., Granger, A. J. & Sabatini, B. L. Mechanisms and functions of GABA co-release. Nat. Rev. Neurosci. 17, 139–145 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hnasko, T. S. & Edwards, R. H. Neurotransmitter corelease: mechanism and physiological role. Annu. Rev. Physiol. 74, 225–243 (2012).

    CAS  PubMed  Google Scholar 

  54. Zhang, S. et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat. Neurosci. 18, 386–392 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Silm, K. et al. Synaptic vesicle recycling pathway determines neurotransmitter content and release properties. Neuron 102, 786–800.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stuber, G. D., Hnasko, T. S., Britt, J. P., Edwards, R. H. & Bonci, A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J. Neurosci. 30, 8229–8233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pickel, V. M., Beckley, S. C., Joh, T. H. & Reis, D. J. Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res. 225, 373–385 (1981).

    CAS  PubMed  Google Scholar 

  58. Tennyson, V. M., Heikkila, R., Mytilineou, C., Côté, L. & Cohen, G. 5-Hydroxydopamine ‘tagged’ neuronal boutons in rabbit neostriatum: interrelationship between vesicles and axonal membrane. Brain Res. 82, 341–348 (1974).

    CAS  PubMed  Google Scholar 

  59. Tritsch, N. X., Ding, J. B. & Sabatini, B. L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490, 262–266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stensrud, M. J., Puchades, M. & Gundersen, V. GABA is localized in dopaminergic synaptic vesicles in the rodent striatum. Brain Struct. Funct. 3, 1–12 (2013).

    Google Scholar 

  61. Ducrot, C. et al. Dopaminergic neurons establish a distinctive axonal arbor with a majority of non-synaptic terminals. bioRxiv https://doi.org/10.1101/2020.05.11.088351 (2020).

    Article  Google Scholar 

  62. Südhof, T. C. The presynaptic active zone. Neuron 75, 11–25 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Pang, Z. P. & Sudhof, T. C. Cell biology of Ca2+-triggered exocytosis. Curr. Opin. Cell Biol. 22, 496–505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Biederer, T., Kaeser, P. S. & Blanpied, T. A. Transcellular nanoalignment of synaptic function. Neuron 96, 680–696 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Neher, E. A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse. Pflugers Arch. 453, 261–268 (2006).

    CAS  PubMed  Google Scholar 

  66. Daniel, J. A., Galbraith, S., Iacovitti, L., Abdipranoto, A. & Vissel, B. Functional heterogeneity at dopamine release sites. J. Neurosci. 29, 14670–14680 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lipton, D. M., Maeder, C. I. & Shen, K. Rapid assembly of presynaptic materials behind the growth cone in dopaminergic neurons is mediated by precise regulation of axonal transport. Cell Rep. 24, 2709–2722 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Robinson, B. G. et al. RIM is essential for stimulated but not spontaneous somatodendritic dopamine release in the midbrain. eLife 8, e47972 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaeser, P. S. et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144, 282–295 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaeser, P. S. & Regehr, W. G. The readily releasable pool of synaptic vesicles. Curr. Opin. Neurobiol. 43, 63–70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    CAS  PubMed  Google Scholar 

  72. Pan, P.-Y. Y. & Ryan, T. A. Calbindin controls release probability in ventral tegmental area dopamine neurons. Nat. Neurosci. 15, 813–815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Turner, T. J. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles. J. Neurosci. 24, 11328–11336 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl Acad. Sci. USA 99, 9037–9042 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Deng, L., Kaeser, P. S., Xu, W. & Südhof, T. C. RIM proteins activate vesicle priming by reversing autoinhibitory homodimerization of Munc13. Neuron 69, 317–331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Augustin, I., Rosenmund, C., Sudhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    CAS  PubMed  Google Scholar 

  77. Wang, L. et al. Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine. Nat. Commun. 5, 3925 (2014).

    CAS  PubMed  Google Scholar 

  78. Brimblecombe, K. R., Gracie, C. J., Platt, N. J. & Cragg, S. J. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains. J. Physiol. 593, 929–946 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018). Genetically encoded dopamine sensors were developed and can be used for the detection of release with high spatial precision.

    PubMed  PubMed Central  Google Scholar 

  80. Wang, L. et al. Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice. J. Physiol. 592, 3559–3576 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shin, J. H., Adrover, M. F. & Alvarez, V. A. Distinctive modulation of dopamine release in the nucleus accumbens shell mediated by dopamine and acetylcholine receptors. J. Neurosci. 37, 11166–11180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chergui, K., Suaud-Chagny, M. F. & Gonon, F. Nonlinear relationship between impulse flow, dopamine release and dopamine elimination in the rat brain in vivo. Neuroscience 62, 641–645 (1994).

    CAS  PubMed  Google Scholar 

  83. Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018). Genetically encoded dopamine sensors were developed and can be used for the detection of release with high spatial precision.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou, F.-M., Liang, Y. & Dani, J. A. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat. Neurosci. 4, 1224–1229 (2001).

    CAS  PubMed  Google Scholar 

  85. Soliakov, L. & Wonnacott, S. Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes. J. Neurochem. 67, 163–170 (1996).

    CAS  PubMed  Google Scholar 

  86. Threlfell, S. et al. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75, 58–64 (2012).

    CAS  PubMed  Google Scholar 

  87. Giorguieff, M. F., Le Floc’h, M. L., Westfall, T. C., Glowinski, J. & Besson, M. J. Nicotinic effect of acetylcholine on the release of newly synthesized [3H]dopamine in rat striatal slices and cat caudate nucleus. Brain Res. 106, 117–131 (1976).

    CAS  PubMed  Google Scholar 

  88. Ford, C. P., Gantz, S. C., Phillips, P. E. M. & Williams, J. T. Control of extracellular dopamine at dendrite and axon terminals. J. Neurosci. 30, 6975–6983 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Takahashi, T. & Momiyama, A. Different types of calcium channels mediate central synaptic transmission. Nature 366, 156–158 (1993).

    CAS  PubMed  Google Scholar 

  90. Held, R. G. et al. Synapse and active zone assembly in the absence of presynaptic Ca2+ channels and Ca2+ entry. Neuron 107, 667–683.e9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bergquist, F., Niazi, H. S. & Nissbrandt, H. Evidence for different exocytosis pathways in dendritic and terminal dopamine release in vivo. Brain Res. 950, 245–253 (2002).

    CAS  PubMed  Google Scholar 

  92. Fortin, G. D., Desrosiers, C. C., Yamaguchi, N. & Trudeau, L. E. Basal somatodendritic dopamine release requires snare proteins. J. Neurochem. 96, 1740–1749 (2006).

    CAS  PubMed  Google Scholar 

  93. Abercrombie, E. D., DeBoer, P. & Heeringa, M. J. Biochemistry of somatodendritic dopamine release in substantia nigra: an in vivo comparison with striatal dopamine release. Adv. Pharmacol. 42, 133–136 (1997).

    Google Scholar 

  94. Jaffe, E. H., Marty, A., Schulte, A. & Chow, R. H. Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices. J. Neurosci. 18, 3548–3553 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Beckstead, M. J., Grandy, D. K., Wickman, K. & Williams, J. T. Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron 42, 939–946 (2004). Somatodendritic dopamine release can elicit an inhibitory postsynaptic current mediated by the coupling of D2 receptors to GIRK2 channels with properties that suggest a localized transmission mode.

    CAS  PubMed  Google Scholar 

  96. Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: single spike firing. J. Neurosci. 4, 2866–2876 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4, 2877–2890 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chan, C. S. et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447, 1081–1086 (2007).

    CAS  PubMed  Google Scholar 

  99. Khaliq, Z. M. & Bean, B. P. Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J. Neurosci. 30, 7401–7413 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zweifel, L. S. et al. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc. Natl Acad. Sci. USA 106, 7281–7288 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Floresco, S. B., West, A. R., Ash, B., Moore, H. & Grace, A. A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6, 968–973 (2003).

    CAS  PubMed  Google Scholar 

  102. Venton, B. J. et al. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J. Neurochem. 87, 1284–1295 (2003).

    CAS  PubMed  Google Scholar 

  103. Parker, J. G. et al. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning. Proc. Natl Acad. Sci. USA 107, 13491–13496 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gao, M. et al. Functional coupling between the prefrontal cortex and dopamine neurons in the ventral tegmental area. J. Neurosci. 27, 5414–5421 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gonon, F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J. Neurosci. 17, 5972–5978 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gonon, F. G. Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24, 19–28 (1988).

    CAS  PubMed  Google Scholar 

  107. Brimblecombe, K. R. & Cragg, S. J. The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function. ACS Chem. Neurosci. 8, 235–242 (2017).

    CAS  PubMed  Google Scholar 

  108. Beaulieu, J.-M. & Gainetdinov, R. R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217 (2011).

    CAS  PubMed  Google Scholar 

  109. Neve, K. A., Seamans, J. K. & Trantham-Davidson, H. Dopamine receptor signaling. J. Recept. Signal Transduct. 24, 165–205 (2004).

    CAS  Google Scholar 

  110. Gantz, S. C., Ford, C. P., Morikawa, H. & Williams, J. T. The evolving understanding of dopamine neurons in the substantia nigra and ventral tegmental area. Annu. Rev. Physiol. 80, 219–241 (2018).

    CAS  PubMed  Google Scholar 

  111. Callier, S. et al. Evolution and cell biology of dopamine receptors in vertebrates. Biol. Cell 95, 489–502 (2003).

    CAS  PubMed  Google Scholar 

  112. Richfield, E. K., Penney, J. B. & Young, A. B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30, 767–777 (1989).

    CAS  PubMed  Google Scholar 

  113. Hunger, L., Kumar, A. & Schmidt, R. Abundance compensates kinetics: similar effect of dopamine signals on D1 and D2 receptor populations. J. Neurosci. 40, 2868–2881 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    CAS  PubMed  Google Scholar 

  115. Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    CAS  PubMed  Google Scholar 

  117. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    CAS  PubMed  Google Scholar 

  118. Wall, N. R., De La Parra, M., Callaway, E. M. & Kreitzer, A. C. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79, 347–360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66, 896–907 (2010).

    CAS  PubMed  Google Scholar 

  120. Kravitz, A. V., Tye, L. D. & Kreitzer, A. C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    CAS  PubMed  Google Scholar 

  123. Cragg, S. J. & Rice, M. E. Dancing past the DAT at a DA synapse. Trends Neurosci. 27, 270–277 (2004).

    CAS  PubMed  Google Scholar 

  124. Chefer, V. I., Thompson, A. C., Zapata, A. & Shippenberg, T. S. Overview of brain microdialysis. Curr. Protoc. Neurosci. 47, 7.1.1–7.1.28 (2009).

    Google Scholar 

  125. Goto, Y. & Grace, A. A. Limbic and cortical information processing in the nucleus accumbens. Trends Neurosci. 31, 552–558 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Skinbjerg, M., Sibley, D. R., Javitch, J. A. & Abi-Dargham, A. Imaging the high-affinity state of the dopamine D2 receptor in vivo: fact or fiction? Biochem. Pharmacol. 83, 193–198 (2012).

    CAS  PubMed  Google Scholar 

  127. Bowery, B., Rothwell, L. A. & Seabrook, G. R. Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area. Br. J. Pharmacol. 112, 873–880 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yapo, C. et al. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J. Physiol. 595, 7451–7475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Nair, A. G., Gutierrez-Arenas, O., Eriksson, O., Vincent, P. & Hellgren Kotaleski, J. Sensing positive versus negative reward signals through adenylyl cyclase-coupled GPCRs in direct and indirect pathway striatal medium spiny neurons. J. Neurosci. 35, 14017–14030 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dreyer, J. K., Herrik, K. F., Berg, R. W. & Hounsgaard, J. D. Influence of phasic and tonic dopamine release on receptor activation. J. Neurosci. 30, 14273–14283 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sano, K., Noshiro, O., Katsuda, K., Nishikori, K. & Maeno, H. Dopamine receptors and dopamine-sensitive adenylate cyclase in canine caudate nucleus. Biochem. Pharmacol. 28, 3617–3627 (1979).

    CAS  PubMed  Google Scholar 

  132. Klein Herenbrink, C. et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat. Commun. 7, 10842 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Garris, P., Ciolkowski, E., Pastore, P. & Wightman, R. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J. Neurosci. 14, 6084–6093 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Robinson, B. G. et al. Desensitized D2 autoreceptors are resistant to trafficking. Sci. Rep. 7, 4379 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. Ford, C. P., Phillips, P. E. & Williams, J. T. The time course of dopamine transmission in the ventral tegmental area. J. Neurosci. 29, 13344–13352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Courtney, N. A. & Ford, C. P. The timing of dopamine- and noradrenaline-mediated transmission reflects underlying differences in the extent of spillover and pooling. J. Neurosci. 34, 7645–7656 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Arbuthnott, G. W. & Wickens, J. Space, time and dopamine. Trends Neurosci. 30, 62–69 (2007).

    CAS  PubMed  Google Scholar 

  138. Pothos, E. N., Davila, V. & Sulzer, D. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18, 4106–4118 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Eshel, N., Tian, J., Bukwich, M. & Uchida, N. Dopamine neurons share common response function for reward prediction error. Nat. Neurosci. 19, 479–486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Freeze, B. S., Kravitz, A. V., Hammack, N., Berke, J. D. & Kreitzer, A. C. Control of basal ganglia output by direct and indirect pathway projection neurons. J. Neurosci. 33, 18531–18539 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    CAS  PubMed  Google Scholar 

  143. Mamaligas, A. A. & Ford, C. P. Spontaneous synaptic activation of muscarinic receptors by striatal cholinergic neuron firing. Neuron 91, 574–586 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kruss, S. et al. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc. Natl Acad. Sci. USA 114, 1789–1794 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Robinson, D. L., Venton, B. J., Heien, M. L. A. V. & Wightman, R. M. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 49, 1763–1773 (2003).

    CAS  PubMed  Google Scholar 

  148. Gubernator, N. G. et al. Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324, 1441–1444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dai, M. & Tepper, J. M. Do silent dopaminergic neurons exist in rat substantia nigra in vivo? Neuroscience 85, 1089–1099 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on dopamine and synaptic transmission in the Kaeser laboratory is supported by the US National Institutes of Health (R01NS103484, R01NS083898, R01MH113349 to P.S.K.), the Dean’s Initiative Award for Innovation (to P.S.K.), the Lefler Foundation (to P.S.K.), a Gordon postdoctoral fellowship (to C.L.), and a Damon Runyon postdoctoral fellowship (DRG-2417-20 to P.G.). The authors thank J. Williams and R. Wise for comments and discussions. The authors apologize to colleagues whose work they could not cite as not all important work could be included owing to space restrictions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Pascal S. Kaeser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks K. Neve, N. Tritsch, L.-E. Trudeau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Varicosities

Enlarged compartments of dopamine axons filled with small, clear vesicles; varicosities are similar to presynaptic boutons but are often not associated with well-defined postsynaptic specializations.

Quantal release events

Events involving fusion of a single vesicle, leading to the release of neurotransmitters from that vesicle.

Symmetric synapses

Synapses in which the presynaptic and postsynaptic electron densities appear similar, contrasting asymmetric synapses in which the postsynaptic densities are more prominent.

Chromaffin cells

Endocrine cells in the adrenal medulla that secrete catecholamines; chromaffin cells are a widely used model to study exocytosis.

Readily releasable pool

(RRP). The subset of vesicles within a nerve terminal that can be quickly released by an action potential; readily releasable vesicles are often docked.

Vesicular release probability

(P). The probability with which a vesicle from the readily releasable pool fuses with the presynaptic plasma membrane in response to an action potential.

Depression

A decrease in release during or following repetitive firing; depression is typically a result of deletion of the readily releasable pool owing to a high P.

Somatodendritic release

Release from neuronal somata and dendrites (as opposed to axons); somatodendritic dopamine release is mediated by exocytosis and is an important feature of dopamine neurons.

Pacemaker currents

Cell-autonomous, spontaneous currents that drive the tonic firing of dopamine neurons; they are mainly mediated by Ca2+ channels.

Refractory sites

Sites at which a vesicle has fused become refractory and are unavailable for immediate reuse because the readily releasable pool is depleted and because material from the preceding fusion event needs to be cleared.

Direct and indirect pathways

The prominent output circuits of the striatum that originate from separate medium spiny neuron populations and project to distinct target areas.

Dissociation constant

An equilibrium constant that specifies the tendency of an agent to separate from its target; a high dissociation constant reflects a low binding affinity.

Dwell times

The period of time for which a ligand is bound to its target; prolonged dopamine dwell times generally result in enhanced dopamine receptor signalling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Goel, P. & Kaeser, P.S. Spatial and temporal scales of dopamine transmission. Nat Rev Neurosci 22, 345–358 (2021). https://doi.org/10.1038/s41583-021-00455-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-021-00455-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing