Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential

Abstract

Systemic sclerosis (SSc) is a prototypical inflammatory fibrotic disease involving inflammation, vascular abnormalities and fibrosis that primarily affect the skin and lungs. The aetiology of SSc is unknown and its pathogenesis is only partially understood. Of all the rheumatic diseases, SSc carries the highest all-cause mortality rate and represents an unmet medical need. A growing body of evidence implicates epigenetic aberrations in this intractable disease, including specific modifications affecting the three main cell types involved in SSc pathogenesis: immune cells, endothelial cells and fibroblasts. In this Review, we discuss the latest insights into the role of DNA methylation, histone modifications and non-coding RNAs in SSc and how these epigenetic alterations affect disease features. In particular, histone modifications have a role in the regulation of gene expression pertinent to activation of fibroblasts to myofibroblasts, governing their fate. DNA methyltransferases are crucial in disease pathogenesis by mediating methylation of DNA in specific promoters, regulating expression of specific pathways. We discuss targeting of these enzymes for therapeutic gain. Innovative epigenetic therapy could be targeted to treat the disease in a precision epigenetics approach.

Key points

  • In systemic sclerosis (SSc), epigenetic aberrations are prominent in the main cell types involved in the disease pathogenesis.

  • DNA in SSc fibroblasts seems to be hypermethylated, leading to repression of gene expression of negative regulators such as SOCS3.

  • Studies of open regions of chromatin using ATAC sequencing have identified multiple regions of transcriptionally active genes, although their function (or functions) needs further investigation in understanding the role in SSc pathogenesis.

  • Non-coding RNAs, including long non-coding RNAs and microRNAs, have been linked to SSc in the past few years and might be targets for anti-fibrotic therapy through alteration of their levels.

  • Epigenetic drugs already in use for other indications, such as decitabine, could be repurposed for SSc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic mechanisms.
Fig. 2: Cell type-specific epigenetic aberrations in systemic sclerosis.

Similar content being viewed by others

References

  1. Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet 390, 1685–1699 (2017).

    Article  PubMed  Google Scholar 

  2. Hinchcliff, M. & O’Reilly, S. Current and potential new targets in systemic sclerosis therapy: a new hope. Curr. Rheumatol. Rep. 22, 42 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Simeón-Aznar, C. P. et al. Registry of the Spanish network for systemic sclerosis: clinical pattern according to cutaneous subsets and immunological status. Semin. Arthritis Rheum. 41, 789–800 (2012).

    Article  PubMed  Google Scholar 

  4. Vonk, M. C. et al. Systemic sclerosis and its pulmonary complications in The Netherlands: an epidemiological study. Ann. Rheum. Dis. 68, 961–965 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Allanore, Y. et al. Systemic sclerosis. Nat. Rev. Dis. Primers 1, 15002 (2015).

    Article  PubMed  Google Scholar 

  6. Varga, J. & Abraham, D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117, 557–567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo, Y., Wang, Y., Wang, Q., Xiao, R. & Lu, Q. Systemic sclerosis: genetics and epigenetics. J. Autoimmun. 41, 161–167 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Gladman, D. D. et al. HLA markers for susceptibility and expression in scleroderma. J. Rheumatol. 32, 1481 (2005).

    CAS  PubMed  Google Scholar 

  9. Beretta, L. et al. Analysis of Class II human leucocyte antigens in Italian and Spanish systemic sclerosis. Rheumatology 51, 52–59 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Patel, S. et al. Occupational silica exposure in an Australian systemic sclerosis cohort. Rheumatology 59, 3900–3905 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Lyko, F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Bostick, M. et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen, L. et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153, 692–706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Delatte, B., Deplus, R. & Fuks, F. Playing TETris with DNA modifications. EMBO J. 33, 1198–1211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dees, C. et al. TGF-β–induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J. Clin. Invest. 130, 2347–2363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Henderson, J., Distler, J. & O’Reilly, S. The role of epigenetic modifications in systemic sclerosis: a druggable target. Trends Mol. Med. 25, 395–411 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Horsburgh, S. et al. MicroRNAs in the skin: role in development, homoeostasis and regeneration. Clin. Sci. 131, 1923–1940 (2017).

    Article  CAS  Google Scholar 

  23. Ozsolak, F. et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 22, 3172–3183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Lund, E., Güttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834 (2001).

    Article  PubMed  Google Scholar 

  28. Uszczynska-Ratajczak, B., Lagarde, J., Frankish, A., Guigó, R. & Johnson, R. Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 19, 535–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiang, J. F. et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24, 513–531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He, X. et al. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumour Biol. 35, 12181–12188 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Leary, V. B. et al. PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep. 11, 474–485 (2015).

    Article  PubMed  CAS  Google Scholar 

  33. Mondal, T. et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat. Commun. 6, 7743 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272–283 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  PubMed  CAS  Google Scholar 

  36. Luger, K., Dechassa, M. L. & Tremethick, D. J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 13, 436–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Dowson, C., Simpson, N., Duffy, L. & O’Reilly, S. Innate immunity in systemic sclerosis. Curr. Rheumatol. Rep. 19, 2 (2017).

    Article  PubMed  CAS  Google Scholar 

  43. Lei, W. et al. Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand. J. Rheumatol. 38, 369–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Lian, X. et al. DNA demethylation of CD40L in CD4+ T cells from women with systemic sclerosis: A possible explanation for female susceptibility. Arthritis Rheum. 64, 2338–2345 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Jiang, H. et al. Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin. Immunol. 143, 39–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Y. et al. Hypomethylation and overexpression of ITGAL (CD11a) in CD4+ T cells in systemic sclerosis. Clin. Epigenetics 6, 25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, T. et al. Whole-genome bisulfite sequencing in systemic sclerosis provides novel targets to understand disease pathogenesis. BMC Med. Genomics 12, 144 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wei, J. et al. Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 64, 2734–2745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ding, W. et al. Genome-wide DNA methylation analysis in systemic sclerosis reveals hypomethylation of IFN-associated genes in CD4+ and CD8+ T cells. J. Invest. Dermatol. 138, 1069–1077 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Li, T. et al. Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci. Genome Med. 12, 81 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Qiu, Y. & Huang, S. CTCF-mediated genome organization and leukemogenesis. Leukemia 34, 2295–2304 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fullard, N. & O’Reilly, S. Role of innate immune system in systemic sclerosis. Semin. Immunopathol. 37, 511–517 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. van der Kroef, M. et al. Histone modifications underlie monocyte dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic targeting. Ann. Rheum. Dis. 78, 529–538 (2019).

    Article  PubMed  CAS  Google Scholar 

  55. Ciechomska, M. et al. Histone demethylation and Toll-like receptor 8-dependent cross-talk in monocytes promotes transdifferentiation of fibroblasts in systemic sclerosis via Fra-2. Arthritis Rheumatol. 68, 1493–1504 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Mariotti, B. et al. The long non-coding RNA NRIR drives IFN-response in monocytes: implication for systemic sclerosis. Front. Immunol. 10, 100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ciechomska, M. et al. Global miRNA and mRNA expression profiles identify miRNA-26a-2-3p-dependent repression of IFN signature in systemic sclerosis human monocytes. Eur. J. Immunol. 50, 1057–1066 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Rossato, M. et al. Association of microRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol. 69, 1891–1902 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Chouri, E. et al. Implication of miR-126 and miR-139-5p in plasmacytoid dendritic cell dysregulation in systemic sclerosis. J. Clin. Med. 10, 491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, Q. et al. Chromatin accessibility landscapes of skin cells in systemic sclerosis nominate dendritic cells in disease pathogenesis. Nat. Commun. 11, 5843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tsou, P. S., Palisoc, P. J., Flavahan, N. A. & Khanna, D. Dissecting the cellular mechanism of prostacyclin analogue iloprost in reversing vascular dysfunction in scleroderma. Arthritis Rheumatol. 73, 520–529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manetti, M. et al. Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ. Res. 109, e14–e26 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Y. & Kahaleh, B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J. Cell Mol. Med. 17, 1291–1299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsou, P. S. et al. Histone deacetylase 5 is overexpressed in scleroderma endothelial cells and impairs angiogenesis via repression of proangiogenic factors. Arthritis Rheumatol. 68, 2975–2985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsou, P. S. et al. Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. Proc. Natl Acad. Sci. USA 116, 3695–3702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsou, P. S., Palisoc, P. J., Ali, M., Khanna, D. & Sawalha, A. H. Genome-wide reduction in chromatin accessibility and unique transcription factor footprints in endothelial cells and fibroblasts in scleroderma skin. Arthritis Rheumatol. 73, 1501–1513 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Hinz, B. & Lagares, D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16, 11–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Altorok, N., Tsou, P. S., Coit, P., Khanna, D. & Sawalha, A. H. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann. Rheum. Dis. 74, 1612–1620 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Baker Frost, D. et al. Differential DNA methylation landscape in skin fibroblasts from African americans with systemic sclerosis. Genes (Basel) 12, 129 (2021).

    Article  CAS  Google Scholar 

  70. Wang, X.-F., Zhang, B.-H., Lu, X.-Q. & Wang, R.-Q. DLX5 gene regulates the Notch signaling pathway to promote glomerulosclerosis and interstitial fibrosis in uremic rats. J. Cell. Physiol. 234, 21825–21837 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Henderson, J. et al. Methyl cap binding protein 2: a key epigenetic protein in systemic sclerosis. Rheumatology 58, 527–535 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. He, Y., Tsou, P. S., Khanna, D. & Sawalha, A. H. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Ann. Rheum. Dis. 77, 1208–1218 (2018).

    PubMed  Google Scholar 

  73. Wang, Y. et al. MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program. Sci. Adv. 7, eabb6075 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. O’Reilly, S., Ciechomska, M., Cant, R., Hügle, T. & van Laar, J. M. Interleukin-6, its role in fibrosing conditions. Cytokine Growth Factor. Rev. 23, 99–107 (2012).

    Article  PubMed  CAS  Google Scholar 

  75. O’Reilly, S., Ciechomska, M., Cant, R. & van Laar, J. M. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J. Biol. Chem. 289, 9952–9960 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Shin, J. Y. et al. Epigenetic activation and memory at a TGFB2 enhancer in systemic sclerosis. Sci. Transl. Med. 11, eaaw0790 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Vichaikul, S. et al. Inhibition of histone readers bromodomain and extraterminal domain proteins alleviates scleroderma fibrosis. Arthritis Rheumatol. https://acrabstracts.org/abstract/inhibition-of-histone-readers-bromodomain-and-extraterminal-domain-proteins-alleviates-scleroderma-fibrosis/ (2019).

  78. Stock, C. J. W. et al. Bromodomain and extraterminal (BET) protein inhibition restores redox balance and inhibits myofibroblast activation. Biomed. Res. Int. 2019, 1484736 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sanders, Y. Y. et al. Brd4-p300 inhibition downregulates Nox4 and accelerates lung fibrosis resolution in aged mice. JCI Insight 5, e137127 (2020).

    Article  PubMed Central  Google Scholar 

  80. Wasson, C. W. et al. Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH. Ann. Rheum. Dis. 79, 507–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Wasson, C. W. et al. Long non-coding RNA HOTAIR induces GLI2 expression through Notch signalling in systemic sclerosis dermal fibroblasts. Arthritis Res. Ther. 22, 286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin, X., Li, J. & Xing, Y. Q. Geniposide, a sonic hedgehog signaling inhibitor, inhibits the activation of hepatic stellate cell. Int. Immunopharmacol. 72, 330–338 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Kugler, M. C. et al. Sonic hedgehog signaling regulates myofibroblast function during alveolar septum formation in murine postnatal lung. Am. J. Respir. Cell Mol. Biol. 57, 280–293 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pachera, E. et al. Long noncoding RNA H19X is a key mediator of TGF-β-driven fibrosis. J. Clin. Invest. 130, 4888–4905 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Forrester, H. B., Li, J., Leong, T., McKay, M. J. & Sprung, C. N. Identification of a radiation sensitivity gene expression profile in primary fibroblasts derived from patients who developed radiotherapy-induced fibrosis. Radiother. Oncol. 111, 186–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Henderson, J., Wilkinson, S., Przyborski, S., Stratton, R. & O’Reilly, S. microRNA27a-3p mediates reduction of the Wnt antagonist sFRP-1 in systemic sclerosis. Epigenetics 16, 808–817 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yaseen, B. et al. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatology 59, 2625–2636 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Yao, Q. et al. MiR-16-5p suppresses myofibroblast activation in systemic sclerosis by inhibiting NOTCH signaling. Aging 13, 2640–2654 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Feng, S. & De Carvalho, D. D. Clinical advances in targeting epigenetics for cancer therapy. FEBS J. 29, 375–381 (2021).

    Google Scholar 

  90. Wang, Y., Fan, P. S. & Kahaleh, B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 54, 2271–2279 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Dees, C. et al. The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann. Rheum. Dis. 73, 1232–1239 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, Y. Y. et al. DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br. J. Dermatol. 171, 39–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Noda, S. et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat. Commun. 5, 5797 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, Y. et al. Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Ann. Rheum. Dis. 77, 744–751 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Daver, N. et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov. 9, 370–383 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huber, L. C. et al. Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum. 56, 2755–2764 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Svegliati, S. et al. Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci. Signal. 7, ra84 (2014).

    Article  PubMed  CAS  Google Scholar 

  99. Palumbo-Zerr, K. et al. Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nat. Med. 21, 150–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Grabiec, A. M., Korchynskyi, O., Tak, P. P. & Reedquist, K. A. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis. 71, 424–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Wei, J. et al. The histone deacetylase sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor beta signaling. Arthritis Rheumatol. 67, 1323–1334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhu, X. et al. Sirt1 ameliorates systemic sclerosis by targeting the mTOR pathway. J. Dermatol. Sci. 87, 149–158 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Akamata, K. et al. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget 7, 69321–69336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chu, H. et al. Sirtuin1 protects against systemic sclerosis-related pulmonary fibrosis by decreasing proinflammatory and profibrotic processes. Am. J. Respir. Cell Mol. Biol. 58, 28–39 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wyman, A. E. et al. Sirtuin 7 is decreased in pulmonary fibrosis and regulates the fibrotic phenotype of lung fibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol. 312, L945–L958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sosulski, M. L., Gongora, R., Feghali-Bostwick, C., Lasky, J. A. & Sanchez, C. G. Sirtuin 3 deregulation promotes pulmonary fibrosis. J. Gerontol. A Biol. Sci. Med. Sci. 72, 595–602 (2017).

    CAS  PubMed  Google Scholar 

  107. Rehan, M. et al. Restoration of SIRT3 gene expression by airway delivery resolves age-associated persistent lung fibrosis in mice. Nat. Aging 1, 205–217 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhu, L., Mou, Q., Wang, Y., Zhu, Z. & Cheng, M. Resveratrol contributes to the inhibition of liver fibrosis by inducing autophagy via the microRNA‑20a‑mediated activation of the PTEN/PI3K/AKT signaling pathway. Int. J. Mol. Med. 46, 2035–2046 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bergmann, C. et al. The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Ann. Rheum. Dis. 77, 150–158 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Martin-Mateos, R. et al. Enhancer of Zeste Homologue 2 inhibition attenuates TGF-β dependent hepatic stellate cell activation and liver fibrosis. Cell Mol. Gastroenterol. Hepatol. 7, 197–209 (2019).

    Article  PubMed  Google Scholar 

  111. Ligresti, G. et al. CBX5/G9a/H3K9me-mediated gene repression is essential to fibroblast activation during lung fibrosis. JCI Insight 5, e127111 (2019).

    Article  Google Scholar 

  112. Ghosh, A. K. et al. p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis. J. Invest. Dermatol. 133, 1302–1310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Welti, J. et al. Targeting the p300/CBP axis in lethal prostate cancer. Cancer Discov. 11, 1118–1137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yan, Q., Chen, J., Li, W., Bao, C. & Fu, Q. Targeting miR-155 to treat experimental scleroderma. Sci. Rep. 6, 20314 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Peng, W. J. et al. MicroRNA-29: a potential therapeutic target for systemic sclerosis. Expert Opin. Ther. Targets 16, 875–879 (2012).

    Article  PubMed  CAS  Google Scholar 

  116. Gallant-Behm, C. L. et al. A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J. Invest. Dermatol. 139, 1073–1081 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Makino, K. et al. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J. Immunol. 190, 3905–3915 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Krützfeldt, J. et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005).

    Article  PubMed  CAS  Google Scholar 

  119. Zerr, P. et al. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann. Rheum. Dis. 75, 226–233 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Kramer, M. et al. Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Ann. Rheum. Dis. 72, 614–620 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. Hardy, T. et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut 66, 1321 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Wielscher, M. et al. Diagnostic performance of plasma DNA methylation profiles in lung cancer, pulmonary fibrosis and COPD. EBioMedicine 2, 929–936 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.O. researched data for the article. All authors made substantial contributions to discussions of the content and contributed to writing the article and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Steven O’Reilly.

Ethics declarations

Competing interests

S.O. became a full-time employee of Stipe Therapeutics after submission of this manuscript. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks Y. Asano, B. Kahaleh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Methyl binding domain

A family of methyl-CpG-binding domain proteins that translate the DNA methylation signal and that work in concert with other proteins such as histone deacetyl transferases to facilitate gene repression.

Histone tails

Flexible regions that flank both ends of the histone fold and that can be modified by a plethora of modifications that impact chromatin dynamics and gene expression.

Lactylation

An epigenetic modification whereby the metabolite lactate is deposited on histone lysine residues.

Histone acetyl transferases

(HATs). A group of enzymes that mediate the addition of an acetyl group onto lysine residues on histones to modulate gene expression.

Histone deacetyl transferases

(HDACs). A group of enzymes that mediate the removal of acetyl groups from lysine residues on histones, positively regulating gene expression.

Stress fibres

Contractile actin bundles found in non-muscle cells, composed of actin and non-muscle myosin II.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsou, PS., Varga, J. & O’Reilly, S. Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat Rev Rheumatol 17, 596–607 (2021). https://doi.org/10.1038/s41584-021-00683-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00683-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing