Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intravesical device-assisted therapies for non-muscle-invasive bladder cancer

Abstract

Non-muscle-invasive bladder cancer (NMIBC), the most prevalent type of bladder cancer, accounts for ~75% of bladder cancer diagnoses. This disease has a 50% risk of recurrence and 20% risk of progression within 5 years, despite the use of intravesical adjuvant treatments (such as BCG or mitomycin C) that are recommended by clinical guidelines. Intravesical device-assisted therapies, such as radiofrequency-induced thermochemotherapeutic effect (RITE), conductive hyperthermic chemotherapy, and electromotive drug administration (EMDA), have shown promising efficacy. These device-assisted treatments are an attractive alternative to BCG, as issues with supply have been a problem in some countries. RITE might be an effective treatment option for some patients who have experienced BCG failure and are not candidates for radical cystectomy. Data from trials using EMDA suggest that it is effective in high-risk disease but requires further validation, and results of randomized trials are eagerly awaited for conductive hyperthermic chemotherapy. Considerable heterogeneity in patient cohorts, treatment sessions, use of maintenance regimens, and single-arm study design makes it difficult to draw solid conclusions, although randomized controlled trials have been reported for RITE and EMDA.

Key points

  • Intravesical chemotherapy and BCG are the recommended adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC) to reduce the risk of disease recurrence.

  • The combination of BCG supply shortage and alternative bladder-sparing approaches in patients with BCG-refractory disease has led to the development of hyperthermia-inducing device-assisted therapies for NMIBC.

  • Radiofrequency-induced thermochemotherapeutic effect (RITE), hyperthermic conductive chemotherapy, and electromotive drug administration (EMDA) chemotherapy are the most widely used devices to augment intravesical chemotherapy.

  • Randomized controlled trials suggest that RITE and alternating BCG and EMDA mitomycin C are more efficacious than BCG alone. Data on patients with concurrent carcinoma in situ treated with RITE are currently inconclusive.

  • Adverse events from RITE, hyperthermic conductive chemotherapy, and EMDA chemotherapy are short-lived and better tolerated than BCG.

  • Other novel therapies that improve the delivery of chemotherapy by prolonging chemotherapy exposure time or targeted local therapy are promising.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mechanism of action of how hyperthermia potentiates chemotherapy.
Fig. 2: Schematic diagram of the Synergo system.

Figure adapted with permission from Gad Lev, Medical Enterprises Europe B.V.

Fig. 3: Schematic diagram of the Combat BRS.

Figure adapted with permission from Sarah Bruce-White, Combat Medical Ltd.

Fig. 4: Schematic diagram of the electromotive drug administration system.

Figure adapted with permission from Paolo Eruzzi, Physion srl.

Fig. 5: GemRIS intravesical gemcitabine depot delivery system.

Figure adapted with permission from Chris Searcy, Taris Biomedical LLC.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, 9 (2015).

    Article  Google Scholar 

  2. Tan, W. S., Rodney, S., Lamb, B., Feneley, M. & Kelly, J. Management of non-muscle invasive bladder cancer: a comprehensive analysis of guidelines from the United States, Europe and Asia. Cancer Treatment Rev. 47, 22–31 (2016).

    Article  Google Scholar 

  3. Colombo, R. et al. Thermo-chemotherapy and electromotive drug administration of mitomycin C in superficial bladder cancer eradication. a pilot study on marker lesion. Eur. Urol. 39, 95–100 (2001).

    Article  CAS  Google Scholar 

  4. Di Stasi, S. M. et al. Electromotive instillation of mitomycin immediately before transurethral resection for patients with primary urothelial non-muscle invasive bladder cancer: a randomised controlled trial. Lancet Oncol. 12, 871–879 (2011).

    Article  Google Scholar 

  5. Sylvester, R. J. et al. Systematic review and individual patient data meta-analysis of randomized trials comparing a single immediate instillation of chemotherapy after transurethral resection with transurethral resection alone in patients with stage pTa-pT1 urothelial carcinoma of the bladder: which patients benefit from the instillation? Eur. Urol. 69, 231–244 (2016).

    Article  Google Scholar 

  6. Huncharek, M., Geschwind, J. F., Witherspoon, B., McGarry, R. & Adcock, D. Intravesical chemotherapy prophylaxis in primary superficial bladder cancer: a meta-analysis of 3703 patients from 11 randomized trials. J. Clin. Epidemiol. 53, 676–680 (2000).

    Article  CAS  Google Scholar 

  7. Shariat, S. F., Chade, D. C., Karakiewicz, P. I., Scherr, D. S. & Dalbagni, G. Update on intravesical agents for non-muscle-invasive bladder cancer. Immunotherapy 2, 381–392 (2010).

    Article  CAS  Google Scholar 

  8. Tomasz, M. Mitomycin C: small, fast and deadly (but very selective). Chem. Biol. 2, 575–579 (1995).

    Article  CAS  Google Scholar 

  9. Bohle, A., Jocham, D. & Bock, P. R. Intravesical bacillus Calmette-Guerin versus mitomycin C for superficial bladder cancer: a formal meta-analysis of comparative studies on recurrence and toxicity. J. Urol. 169, 90–95 (2003).

    Article  CAS  Google Scholar 

  10. Sylvester, R. J., Oosterlinck, W. & van der Meijden, A. P. A single immediate postoperative instillation of chemotherapy decreases the risk of recurrence in patients with stage Ta T1 bladder cancer: a meta-analysis of published results of randomized clinical trials. J. Urol. 171, 2186–2190 (2004).

    Article  Google Scholar 

  11. Addeo, R. et al. Randomized phase III trial on gemcitabine versus mytomicin in recurrent superficial bladder cancer: evaluation of efficacy and tolerance. J. Clin. Oncol. 28, 543–548 (2010).

    Article  CAS  Google Scholar 

  12. Messing, E. M. et al. Effect of intravesical instillation of gemcitabine versus saline immediately following resection of suspected low-grade non-muscle-invasive bladder cancer on tumor recurrence: SWOG S0337 randomized clinical trial. JAMA 319, 1880–1888 (2018).

    Article  CAS  Google Scholar 

  13. Lamm, D. L. et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized southwest oncology group study. J. Urol. 163, 1124–1129 (2000).

    Article  CAS  Google Scholar 

  14. Ojea, A. et al. A multicentre, randomised prospective trial comparing three intravesical adjuvant therapies for intermediate-risk superficial bladder cancer: low-dose bacillus Calmette-Guerin (27 mg) versus very low-dose bacillus Calmette-Guerin (13.5 mg) versus mitomycin C. Eur. Urol. 52, 1398–1406 (2007).

    Article  CAS  Google Scholar 

  15. Bandari, J. et al. Manufacturing and the market: rationalizing the shortage of Bacillus Calmette-Guérin. Eur. Urol. Focus https://doi.org/10.1016/j.euf.2018.06.018 (2018).

  16. Cambier, S. et al. EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1–3 years of maintenance bacillus Calmette-Guerin. Eur. Urol. 69, 60–69 (2016).

    Article  Google Scholar 

  17. Spiess, P. E. et al. Bladder cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J. Natl Comprehensive Cancer Network 15, 1240–1267 (2017).

    Article  Google Scholar 

  18. Daneshmand, S., Pohar, K. S., Steinberg, G. D., Aron, M. & Cutie, C. Effect of GemRIS (gemcitabine-releasing intravesical system, TAR-200) on antitumor activity in muscle-invasive bladder cancer (MIBC) [abstract]. J. Clin. Oncol. 35, (15 suppl.), e16000 (2017).

    Article  Google Scholar 

  19. Lenis, A. et al. THE CHEMOABLATIVE EFFECT OF VESIGEL INSTILLATION IN PATIENTS WITH NMIBC – RESPONSE RATE AND 1-YEAR DURABILITY [abstract PD19-10]. J. Urol. 197, e368–e369 (2017).

    Article  Google Scholar 

  20. Schaaf, L. et al. Hyperthermia synergizes with chemotherapy by inhibiting PARP1-dependent DNA replication arrest. Cancer Res. 76, 2868–2875 (2016).

    Article  CAS  Google Scholar 

  21. Westra, A. & Dewey, W. C. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 19, 467–477 (1971).

    Article  CAS  Google Scholar 

  22. Mantso, T. et al. Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin. Cancer Biol. 37–38, 96–105 (2016).

    Article  Google Scholar 

  23. Mallory, M., Gogineni, E., Jones, G. C., Greer, L. & Simone, C. B. 2nd. Therapeutic hyperthermia: the old, the new, and the upcoming. Crit. Rev. Oncol. Hematol. 97, 56–64 (2016).

    Article  Google Scholar 

  24. Lefor, A. T., Makohon, S. & Ackerman, N. B. The effects of hyperthermia on vascular permeability in experimental liver metastasis. J. Surg. Oncol. 28, 297–300 (1985).

    Article  CAS  Google Scholar 

  25. Song, C. W. Effect of hyperthermia on vascular functions of normal tissues and experimental tumors; brief communication. J. Natl Cancer Inst. 60, 711–713 (1978).

    Article  CAS  Google Scholar 

  26. Kampinga, H. H. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperthermia 22, 191–196 (2006).

    Article  CAS  Google Scholar 

  27. Milani, V. et al. Heat shock protein 70: role in antigen presentation and immune stimulation. Int. J. Hyperthermia 18, 563–575 (2002).

    Article  CAS  Google Scholar 

  28. Cavaliere, R. et al. Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer 20, 1351–1381 (1967).

    Article  CAS  Google Scholar 

  29. Matzkin, H., Rangel, M. C. & Soloway, M. S. In vitro study of the effect of hyperthermia on normal bladder cell line and on five different transitional cell carcinoma cell lines. J. Urol. 147, 1671–1674 (1992).

    Article  CAS  Google Scholar 

  30. van der Heijden, A. G., Verhaegh, G., Jansen, C. F., Schalken, J. A. & Witjes, J. A. Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: an in vitro study. J. Urol. 173, 1375–1380 (2005).

    Article  Google Scholar 

  31. Arends, T. J. et al. Results of a randomised controlled trial comparing intravesical chemohyperthermia with mitomycin C versus bacillus Calmette-Guerin for adjuvant treatment of patients with intermediate- and high-risk non-muscle-invasive bladder cancer. Eur. Urol. 69, 1046–1052 (2016).

    Article  CAS  Google Scholar 

  32. Sousa, A. et al. Recirculant hyperthermic IntraVEsical chemotherapy (HIVEC) in intermediate-high-risk non-muscle-invasive bladder cancer. Int. J. Hyperthermia 32, 374–380 (2016).

    Article  CAS  Google Scholar 

  33. Ekin, R. G. et al. Results of intravesical chemo-hyperthermia in high-risk non-muscle invasive bladder cancer. Asian Pac. J. Cancer Prev. 16, 3241–3245 (2015).

    Article  Google Scholar 

  34. Longo, T. A. et al. A systematic review of regional hyperthermia therapy in bladder cancer. Int. J. Hyperthermia 32, 381–389 (2016).

    Article  Google Scholar 

  35. Garden, O. J. et al. Guidelines for resection of colorectal cancer liver metastases. Gut 55, (Suppl. 3), iii1–iii8 (2006).

    PubMed  PubMed Central  Google Scholar 

  36. Shaheen, N. J. et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N. Engl. J. Med. 360, 2277–2288 (2009).

    Article  CAS  Google Scholar 

  37. Vargas, H. I. et al. Focused microwave phased array thermotherapy for ablation of early-stage breast cancer: results of thermal dose escalation. Ann. Surg. Oncol. 11, 139–146 (2004).

    Article  Google Scholar 

  38. Okuma, T. et al. Assessment of early treatment response after CT-guided radiofrequency ablation of unresectable lung tumours by diffusion-weighted MRI: a pilot study. Br. J. Radiol. 82, 989–994 (2009).

    Article  CAS  Google Scholar 

  39. Erce, C. & Parks, R. W. Interstitial ablative techniques for hepatic tumours. Br. J. Surg. 90, 272–289 (2003).

    Article  CAS  Google Scholar 

  40. Brace, C. L. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr. Problems Diagnost. Radiol. 38, 135–143 (2009).

    Article  Google Scholar 

  41. van Valenberg, F. J. P. et al. Intravesical radiofrequency induced hyperthermia enhances mitomycin C accumulation in tumour tissue. Int. J. Hyperthermia 1, 1–6 (2017).

    Google Scholar 

  42. Paroni, R. et al. Effect of local hyperthermia of the bladder on mitomycin C pharmacokinetics during intravesical chemotherapy for the treatment of superficial transitional cell carcinoma. Br. J. Clin. Pharmacol. 52, 273–278 (2001).

    Article  CAS  Google Scholar 

  43. Ware, M. J. et al. Radiofrequency treatment alters cancer cell phenotype. Sci. Rep. 5, 12083 (2015).

    Article  Google Scholar 

  44. Colombo, R. et al. A new approach using local combined microwave hyperthermia and chemotherapy in superficial transitional bladder carcinoma treatment. J. Urol. 153, 959–963 (1995).

    Article  CAS  Google Scholar 

  45. Dalton, J. T., Wientjes, M. G., Badalament, R. A., Drago, J. R. & Au, J. L. Pharmacokinetics of intravesical mitomycin C in superficial bladder cancer patients. Cancer Res. 51, 5144–5152 (1991).

    CAS  PubMed  Google Scholar 

  46. Alfred Witjes, J., Hendricksen, K., Gofrit, O., Risi, O. & Nativ, O. Intravesical hyperthermia and mitomycin-C for carcinoma in situ of the urinary bladder: experience of the European Synergo® working party. World J. Urol. 27, 319–324 (2009).

    Article  CAS  Google Scholar 

  47. Tan, W. S. et al. Radiofrequency-induced thermo-chemotherapy effect plus mitomycin versus a second course of bacillus Calmette-Guérin (BCG) or institutional standard in patients with recurrence of non-muscle invasive bladder cancer following induction or maintenance BCG therapy (HYMN): a phase III, open-label, randomised controlled trial. Eur. Urol. (in the press).

  48. Colombo, R. et al. Local microwave hyperthermia and intravesical chemotherapy as bladder sparing treatment for select multifocal and unresectable superficial bladder tumors. J. Urol. 159, 783–787 (1998).

    Article  CAS  Google Scholar 

  49. Colombo, R. et al. Neoadjuvant combined microwave induced local hyperthermia and topical chemotherapy versus chemotherapy alone for superficial bladder cancer. J. Urol. 155, 1227–1232 (1996).

    Article  CAS  Google Scholar 

  50. Rigatti, P., Lev, A. & Colombo, R. Combined intravesical chemotherapy with mitomycin C and local bladder microwave-induced hyperthermia as a preoperative therapy for superficial bladder tumors. A preliminary clinical study. Eur. Urol. 20, 204–210 (1991).

    Article  CAS  Google Scholar 

  51. Sooriakumaran, P. et al. Predictive factors for time to progression after hyperthermic mitomycin C treatment for high-risk non-muscle invasive urothelial carcinoma of the bladder: an observational cohort study of 97 patients. Urol. Int. 96, 83–90 (2016).

    Article  CAS  Google Scholar 

  52. Erturhan, S. et al. Thermochemotherapy in adjuvant treatment of primary high risk non muscle invasive bladder cancers: single center results. Arch. Esp. Urol. 68, 666–671 (2015).

    PubMed  Google Scholar 

  53. Maffezzini, M. et al. Intravesical mitomycin C combined with local microwave hyperthermia in non-muscle-invasive bladder cancer with increased European Organization for Research and Treatment of Cancer (EORTC) score risk of recurrence and progression. Cancer Chemother. Pharmacol. 73, 925–930 (2014).

    Article  CAS  Google Scholar 

  54. Colombo, R., Salonia, A., Leib, Z., Pavone-Macaluso, M. & Engelstein, D. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int. 107, 912–918 (2011).

    Article  CAS  Google Scholar 

  55. Halachmi, S. et al. Intravesical mitomycin C combined with hyperthermia for patients with T1G3 transitional cell carcinoma of the bladder. Urol. Oncol. 29, 259–264 (2011).

    Article  CAS  Google Scholar 

  56. Nativ, O. et al. Combined thermo-chemotherapy for recurrent bladder cancer after bacillus Calmette-Guerin. J. Urol. 182, 1313–1317 (2009).

    Article  CAS  Google Scholar 

  57. van der Heijden, A. G. et al. Preliminary European results of local microwave hyperthermia and chemotherapy treatment in intermediate or high risk superficial transitional cell carcinoma of the bladder. Eur. Urol. 46, 65–71 (2004).

    Article  Google Scholar 

  58. Colombo, R. et al. Multicentric study comparing intravesical chemotherapy alone and with local microwave hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma. J. Clin. Oncol. 21, 4270–4276 (2003).

    Article  Google Scholar 

  59. Kiss, B., Schneider, S., Thalmann, G. N. & Roth, B. Is thermochemotherapy with the Synergo system a viable treatment option in patients with recurrent non-muscle-invasive bladder cancer? Int. J. Urol. 22, 158–162 (2015).

    Article  Google Scholar 

  60. Volpe, A. et al. Thermochemotherapy for non-muscle-invasive bladder cancer: is there a chance to avoid early cystectomy? Urol. Int. 89, 311–318 (2012).

    Article  CAS  Google Scholar 

  61. Moskovitz, B., Halachmi, S., Moskovitz, M. & Nativ, O. 10-year single-center experience of combined intravesical chemohyperthermia for nonmuscle invasive bladder cancer. Future Oncol. 8, 1041–1049 (2012).

    Article  CAS  Google Scholar 

  62. Moskovitz, B. et al. Thermo-chemotherapy for intermediate or high-risk recurrent superficial bladder cancer patients. Ann. Oncol. 16, 585–589 (2005).

    Article  CAS  Google Scholar 

  63. Gofrit, O. N. et al. Combined local bladder hyperthermia and intravesical chemotherapy for the treatment of high-grade superficial bladder cancer. Urology 63, 466–471 (2004).

    Article  CAS  Google Scholar 

  64. Hounsome, L. S., Verne, J., McGrath, J. S. & Gillatt, D. A. Trends in operative caseload and mortality rates after radical cystectomy for bladder cancer in England for 1998–2010. Eur. Urol. 67, 1056–1062 (2015).

    Article  Google Scholar 

  65. Kamat, A. M. et al. Definitions, end points, and clinical trial designs for non-muscle-invasive bladder cancer: recommendations from the international bladder cancer group. J. Clin. Oncol. 34, 1935–1944 (2016).

    Article  CAS  Google Scholar 

  66. Lammers, R. J. et al. The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review. Eur. Urol. 60, 81–93 (2011).

    Article  Google Scholar 

  67. Rath-Wolfson, L., Moskovitz, B., Dekel, Y., Kugel, V. & Koren, R. Combined intravesical hyperthermia and mitomycin chemotherapy: a preliminary in vivo study. Int. J. Exp. Pathol. 84, 145–152 (2003).

    Article  CAS  Google Scholar 

  68. Sousa, A. et al. A clinical trial of neoadjuvant hyperthermic intravesical chemotherapy (HIVEC) for treating intermediate and high-risk non-muscle invasive bladder cancer. Int. J. Hyperthermia 30, 166–170 (2014).

    Article  CAS  Google Scholar 

  69. Chua, T. C. et al. Intraoperative hyperthermic intraperitoneal chemotherapy after cytoreductive surgery in ovarian cancer peritoneal carcinomatosis: systematic review of current results. J. Cancer Res. Clin. Oncol. 135, 1637–1645 (2009).

    Article  Google Scholar 

  70. Gill, R. S. et al. Treatment of gastric cancer with peritoneal carcinomatosis by cytoreductive surgery and HIPEC: a systematic review of survival, mortality, and morbidity. J. Surg. Oncol. 104, 692–698 (2011).

    Article  Google Scholar 

  71. Verwaal, V. J. et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J. Clin. Oncol. 21, 3737–3743 (2003).

    Article  Google Scholar 

  72. Soria, F. et al. Efficacy and safety of a new device for intravesical thermochemotherapy in non-grade 3 BCG recurrent NMIBC: a phase I-II study. World J. Urol. 34, 189–195 (2016).

    Article  Google Scholar 

  73. Milla, P. et al. Intravesical thermo-chemotherapy based on conductive heat: a first pharmacokinetic study with mitomycin C in superficial transitional cell carcinoma patients. Cancer Chemother. Pharmacol. 73, 503–509 (2014).

    Article  CAS  Google Scholar 

  74. Garnick, M. B., Schade, D., Israel, M., Maxwell, B. & Richie, J. P. Intravesical doxorubicin for prophylaxis in the management of recurrent superficial bladder carcinoma. J. Urol. 131, 43–46 (1984).

    Article  CAS  Google Scholar 

  75. Zhao, P. et al. NIR-driven smart theranostic nanomedicine for on-demand drug release and synergistic antitumour therapy. Sci. Rep. 5, 14258 (2015).

    Article  CAS  Google Scholar 

  76. Mikhail, A. S. et al. Lyso-thermosensitive liposomal doxorubicin for treatment of bladder cancer. Int. J. Hyperthermia 10, 1–8 (2017).

    Article  Google Scholar 

  77. Shan, K., Lincoff, A. M. & Young, J. B. Anthracycline-induced cardiotoxicity. Ann. Intern. Med. 125, 47–58 (1996).

    Article  CAS  Google Scholar 

  78. Xing, M., Yan, F., Yu, S. & Shen, P. Efficacy and cardiotoxicity of liposomal doxorubicin-based chemotherapy in advanced breast cancer: a meta-analysis of ten randomized controlled trials. PLOS ONE 10, e0133569 (2015).

    Article  Google Scholar 

  79. Ekin, R. G. et al. Intravesical bacillus Calmette-Guerin versus chemohyperthermia for high-risk non-muscle-invasive bladder cancer. Can. Urol. Assoc. J. 9, E278–E283 (2015).

    Article  Google Scholar 

  80. Tan, W. S., Palou, J. & Kelly, J. Safety and tolerability analysis of hyperthermic intravesical mitomycin to mitomycin alone in HIVEC I AND HIVEC II: an analysis of 307 patients [abstract MP15-18]. J. Urol. 197, e177 (2017).

    Article  Google Scholar 

  81. EU Clinical Trials Register. Clinical trials for eudract_number:2013-002628-18. European Medicines Agency https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2013-002628-18 (2013).

  82. International Standard Randomised Controlled Trial Number A phase II, open label, multicenter randomised controlled trial comparing hyperthermia plus mitomycin to mitomycin alone, in patients with intermediate risk non-muscle invasive bladder cancer. ISRCTNregistry https://doi.org/10.1186/ISRCTN23639415 (2014).

    Article  Google Scholar 

  83. Di Stasi, S. M. et al. Electromotive versus passive diffusion of mitomycin C into human bladder wall: concentration-depth profiles studies. Cancer Res. 59, 4912–4918 (1999).

    PubMed  Google Scholar 

  84. Di Stasi, S. M. et al. Electromotive delivery of mitomycin C into human bladder wall. Cancer Res. 57, 875–880 (1997).

    PubMed  Google Scholar 

  85. Brausi, M. et al. Intravesical electromotive administration of drugs for treatment of superficial bladder cancer: a comparative Phase II study. Urology 51, 506–509 (1998).

    Article  CAS  Google Scholar 

  86. Gan, C. et al. Sequential bacillus Calmette-Guerin/electromotive drug administration of mitomycin C as the standard intravesical regimen in high risk nonmuscle invasive bladder cancer: 2-year outcomes. J. Urol. 195, 1697–1703 (2016).

    Article  Google Scholar 

  87. Di Stasi, S. M. et al. Sequential BCG and electromotive mitomycin versus BCG alone for high-risk superficial bladder cancer: a randomised controlled trial. Lancet Oncol. 7, 43–51 (2006).

    Article  Google Scholar 

  88. Di Stasi, S. M. et al. Intravesical electromotive mitomycin C versus passive transport mitomycin C for high risk superficial bladder cancer: a prospective randomized study. J. Urol. 170, 777–782 (2003).

    Article  Google Scholar 

  89. Riedl, C. R., Knoll, M., Plas, E. & Pfluger, H. Intravesical electromotive drug administration technique: preliminary results and side effects. J. Urol. 159, 1851–1856 (1998).

    Article  CAS  Google Scholar 

  90. Jung, J. H. et al. Intravesical electromotive drug administration for non-muscle invasive bladder cancer. Cochrane Database Syst. Rev. 9, Cd011864 (2017).

    PubMed  Google Scholar 

  91. Bachir, B. G. et al. Contemporary cost-effectiveness analysis comparing sequential bacillus Calmette-Guerin and electromotive mitomycin versus bacillus Calmette-Guerin alone for patients with high-risk non-muscle-invasive bladder cancer. Cancer 120, 2424–2431 (2014).

    Article  Google Scholar 

  92. National Institute for Health and Care Excellence. Guide to the methods of technology appraisal 2013. NICE https://www.nice.org.uk/process/pmg9/chapter/foreword (2013).

  93. Grosse, S. D. Assessing cost-effectiveness in healthcare: history of the $50,000 per QALY threshold. Expert Rev. Pharmacoeconom. Outcomes Res. 8, 165–178 (2008).

    Article  Google Scholar 

  94. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02722538 (2018).

  95. Friedman, B. et al. The chemoablative effect of vesigel instillation in patients with NMIBC – preliminary results [abstract pd11-05]. J. Urol. 195, e289–e290 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank The Urology Foundation (W.S.T.), Mason Medical Research Foundation (W.S.T.), Medical Research Council (J.D.K.), and University College London Hospitals (UCLH) Biomedical Research Centre (J.D.K.) for funding our work.

Review criteria

A comprehensive literature review was performed using Medline Pubmed and Google Scholar. The following MESH words were used: “non-muscle invasive bladder cancer”, “hyperthermia”, “chemohyperthermia”, “hyperthermia”, “radiofrequency induced thermotherapy”, “RITE”, “EMDA”, “electromotive drug administration”, “mitomycin”, “MMC”, “intravesical chemotherapy”, “device assisted”, and “novel agents”. Original research, review articles, editorials, commentaries and letters to the editor that were in English were used for this review. The reference list of articles was screened to identify additional articles.

Reviewer information

Nature Reviews Urology thanks S. Di Stasi, L. Griffiths and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

W.S.T. researched data for and wrote the manuscript. J.D.K. contributed substantially to the writing, reviewing, and editing of the manuscript before submission.

Corresponding author

Correspondence to Wei Shen Tan.

Ethics declarations

Competing interests

J.D.K. is chief investigator for HYMN and HIVEC-II, which are trials using hyperthermia delivery systems to treat bladder cancer, and is a consultant for Combat Medical. W.S.T. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, W.S., Kelly, J.D. Intravesical device-assisted therapies for non-muscle-invasive bladder cancer. Nat Rev Urol 15, 667–685 (2018). https://doi.org/10.1038/s41585-018-0092-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0092-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing