Extended Data Fig. 9: The nail test on the batteries with C-LiXZM and organic electrolyte. | Nature

Extended Data Fig. 9: The nail test on the batteries with C-LiXZM and organic electrolyte.

From: A highly stable and flexible zeolite electrolyte solid-state Li–air battery

Extended Data Fig. 9

a, The short-circuit battery temperature observed through an infrared camera. b, The first discharge–charge curves of the batteries with organic electrolyte and C-LiXZM after the nail test. c, Terminal discharge voltage of the batteries with organic electrolyte and C-LiXZM after the nail test at a current density of 500 mA g−1 with the specific capacity limited to 1,000 mAg−1. The nail pierced the batteries containing C-LiXZM and organic electrolyte powering a red LED (Supplementary Video 1, 2). The battery with C-LiXZM was able to light up the LED immediately after the nail was removed, whereas the battery with organic electrolyte was no longer able to function. The temperature of the battery with organic electrolyte immediately increased by 2 °C after the short circuit, whereas no temperature change was observed in the case of SSLABs with C-LiXZM. It is notable that a very small button battery with an open system produced such a temperature difference. If a battery pack that contains flammable and explosive organic electrolytes is hit or damaged when used in a vehicle, a short circuit could be very dangerous.

Back to article page