Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A PCBP1–BolA2 chaperone complex delivers iron for cytosolic [2Fe–2S] cluster assembly

Abstract

Hundreds of cellular proteins require iron cofactors for activity, and cells express systems for their assembly and distribution. Molecular details of the cytosolic iron pool used for iron cofactors are lacking, but iron chaperones of the poly(rC)-binding protein (PCBP) family play a key role in ferrous ion distribution. Here we show that, in cells and in vitro, PCBP1 coordinates iron via conserved cysteine and glutamate residues and a molecule of noncovalently bound glutathione (GSH). Proteomics analysis of PCBP1-interacting proteins identified BolA2, which functions, in complex with Glrx3, as a cytosolic [2Fe–2S] cluster chaperone. The Fe–GSH-bound form of PCBP1 complexes with cytosolic BolA2 via a bridging Fe ligand. Biochemical analysis of PCBP1 and BolA2, in cells and in vitro, indicates that PCBP1–Fe–GSH–BolA2 serves as an intermediate complex required for the assembly of [2Fe–2S] clusters on BolA2–Glrx3, thereby linking the ferrous iron and Fe–S distribution systems in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BolA2 forms a complex with PCBP1 and binds in the absence of Glrx3.
Fig. 2: BolA2 requires PCBP1, but not Glrx3, to form an iron-binding complex.
Fig. 3: Stabilization of PCBP1–BolA2 complex by iron and glutathione without inorganic sulfur.
Fig. 4: Requirement of PCBP1 in delivery of iron to Grx3–[2Fe–2S]–BolA2 complex.
Fig. 5: KH3 domain of PCBP1 binds BolA2 and restores BolA2–Glrx3 complex formation.
Fig. 6: Reconstitution of KH3–BolA2 complex with iron and GSH in vitro.

Similar content being viewed by others

Data availability

The proteomics dataset (Supplementary Table 1) is available at MassIVE Repository (https://massive.ucsd.edu/) with the accession number MSV000083887.

References

  1. Hamza, I. & Dailey, H. A. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim. Biophys. Acta 1823, 1617–1632 (2012).

    Article  CAS  Google Scholar 

  2. Ciofi-Baffoni, S., Nasta, V. & Banci, L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 10, 49–72 (2018).

    Article  CAS  Google Scholar 

  3. Lill, R. et al. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur. J. Cell Biol. 94, 280–291 (2015).

    Article  CAS  Google Scholar 

  4. Philpott, C. C. & Jadhav, S. The ins and outs of iron: escorting iron through the mammalian cytosol. Free Radic. Biol. Med. 133, 112–117 (2019).

    Article  CAS  Google Scholar 

  5. Yanatori, I. & Kishi, F. DMT1 and iron transport. Free Radic. Biol. Med. 133, 55–63 (2019).

    Article  CAS  Google Scholar 

  6. Chaudhury, A., Chander, P. & Howe, P. H. Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. RNA 16, 1449–1462 (2010).

    Article  CAS  Google Scholar 

  7. Makeyev, A. V. & Liebhaber, S. A. The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8, 265–278 (2002).

    Article  CAS  Google Scholar 

  8. Ostareck-Lederer, A. & Ostareck, D. H. Control of mRNA translation and stability in haematopoietic cells: the function of hnRNPs K and E1/E2. Biol. Cell 96, 407–411 (2004).

    Article  CAS  Google Scholar 

  9. Ostareck-Lederer, A. & Ostareck, D. H. Precision mechanics with multifunctional tools: how hnRNP K and hnRNPs E1/E2 contribute to post-transcriptional control of gene expression in hematopoiesis. Curr. Protein Pept. Sci. 13, 391–400 (2012).

    Article  CAS  Google Scholar 

  10. Philpott, C. C., Ryu, M. S., Frey, A. & Patel, S. Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J. Biol. Chem. 292, 12764–12771 (2017).

    Article  CAS  Google Scholar 

  11. Shi, H., Bencze, K. Z., Stemmler, T. L. & Philpott, C. C. A cytosolic iron chaperone that delivers iron to ferritin. Science 320, 1207–1210 (2008).

    Article  CAS  Google Scholar 

  12. Epsztejn, S., Kakhlon, O., Glickstein, H., Breuer, W. & Cabantchik, I. Fluorescence analysis of the labile iron pool of mammalian cells. Anal. Biochem. 248, 31–40 (1997).

    Article  CAS  Google Scholar 

  13. Leidgens, S. et al. Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J. Biol. Chem. 288, 17791–17802 (2013).

    Article  CAS  Google Scholar 

  14. Frey, A. G. et al. Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase. Proc. Natl Acad. Sci. USA 111, 8031–8036 (2014).

    Article  CAS  Google Scholar 

  15. Nandal, A. et al. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab. 14, 647–657 (2011).

    Article  CAS  Google Scholar 

  16. Ryu, M. S., Zhang, D., Protchenko, O., Shakoury-Elizeh, M. & Philpott, C. C. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. J. Clin. Invest. 127, 1786–1797 (2017).

    Article  Google Scholar 

  17. Yanatori, I., Yasui, Y., Tabuchi, M. & Kishi, F. Chaperone protein involved in transmembrane transport of iron. Biochem. J. 462, 25–37 (2014).

    Article  CAS  Google Scholar 

  18. Yanatori, I., Richardson, D. R., Imada, K. & Kishi, F. Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J. Biol. Chem. 291, 17303–17318 (2016).

    Article  CAS  Google Scholar 

  19. Yanatori, I., Richardson, D. R., Toyokuni, S. & Kishi, F. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J. Biol. Chem. 292, 13205–13229 (2017).

    Article  CAS  Google Scholar 

  20. Braymer, J. J. & Lill, R. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J. Biol. Chem. 292, 12754–12763 (2017).

    Article  CAS  Google Scholar 

  21. Maio, N. & Rouault, T. A. Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery. Biochim. Biophys. Acta 1853, 1493–1512 (2015).

    Article  CAS  Google Scholar 

  22. Rouault, T. A. & Maio, N. Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J. Biol. Chem. 292, 12744–12753 (2017).

    Article  CAS  Google Scholar 

  23. Srinivasan, V., Pierik, A. J. & Lill, R. Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343, 1137–1140 (2014).

    Article  CAS  Google Scholar 

  24. Haunhorst, P. et al. Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Mol. Biol. Cell 24, 1895–1903 (2013).

    Article  CAS  Google Scholar 

  25. Li, H., Mapolelo, D. T., Randeniya, S., Johnson, M. K. & Outten, C. E. Human glutaredoxin 3 forms [2Fe–2S]-bridged complexes with human BolA2. Biochemistry 51, 1687–1696 (2012).

    Article  CAS  Google Scholar 

  26. Muhlenhoff, U. et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab. 12, 373–385 (2010).

    Article  Google Scholar 

  27. Frey, A. G., Palenchar, D. J., Wildemann, J. D. & Philpott, C. C. A glutaredoxin·BolA complex serves as an iron-sulfur cluster chaperone for the cytosolic cluster assembly machinery. J. Biol. Chem. 291, 22344–22356 (2016).

    Article  CAS  Google Scholar 

  28. Li, F., Bullough, K. Z., Vashisht, A. A., Wohlschlegel, J. A. & Philpott, C. C. Poly(rC)-binding protein 2 regulates hippo signaling to control growth in breast epithelial cells. Mol. Cell. Biol 36, 2121–2131 (2016).

    Article  CAS  Google Scholar 

  29. Banci, L., Camponeschi, F., Ciofi-Baffoni, S. & Muzzioli, R. Elucidating the molecular function of human BOLA2 in GRX3-dependent anamorsin maturation pathway. J. Am. Chem. Soc. 137, 16133–16143 (2015).

    Article  CAS  Google Scholar 

  30. Franco, R., Schoneveld, O. J., Pappa, A. & Panayiotidis, M. I. The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem. 113, 234–258 (2007).

    Article  CAS  Google Scholar 

  31. Biederbick, A. et al. Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol. Cell. Biol. 26, 5675–5687 (2006).

    Article  CAS  Google Scholar 

  32. Li, H. et al. The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe–2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48, 9569–9581 (2009).

    Article  CAS  Google Scholar 

  33. Kumanovics, A. et al. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J. Biol. Chem. 283, 10276–10286 (2008).

    Article  CAS  Google Scholar 

  34. Tang, Y. S. et al. Evidence favoring a positive feedback loop for physiologic auto upregulation of hnRNP-E1 during prolonged folate deficiency in human placental cells. J. Nutr. 147, 482–498 (2017).

    Article  CAS  Google Scholar 

  35. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sidiqi, M. et al. Structure and RNA binding of the third KH domain of poly(C)-binding protein 1. Nucleic Acids Res. 33, 1213–1221 (2005).

    Article  CAS  Google Scholar 

  37. Patel, S. J. et al. Fine-tuning of substrate affinity leads to alternative roles of Mycobacterium tuberculosis Fe2+-ATPases. J. Biol. Chem. 291, 11529–11539 (2016).

    Article  CAS  Google Scholar 

  38. Walkup, G. K. & Imperiali, B. Fluorescent chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization. J. Am. Chem. Soc. 119, 3443–3450 (1997).

    Article  CAS  Google Scholar 

  39. Esposito, B. P., Epsztejn, S., Breuer, W. & Cabantchik, Z. I. A review of fluorescence methods for assessing labile iron in cells and biological fluids. Anal. Biochem. 304, 1–18 (2002).

    Article  CAS  Google Scholar 

  40. Petrat, F., de Groot, H., Sustmann, R. & Rauen, U. The chelatable iron pool in living cells: a methodically defined quantity. Biol. Chem. 383, 489–502 (2002).

    Article  CAS  Google Scholar 

  41. Hider, R. C. & Kong, X. L. Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24, 1179–1187 (2011).

    Article  CAS  Google Scholar 

  42. Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017).

    Article  CAS  Google Scholar 

  43. Ba, L. A., Doering, M., Burkholz, T. & Jacob, C. Metal trafficking: from maintaining the metal homeostasis to future drug design. Metallomics 1, 292–311 (2009).

    Article  CAS  Google Scholar 

  44. Antony, A. et al. Translational upregulation of folate receptors is mediated by homocysteine via RNA-heterogeneous nuclear ribonucleoprotein E1 interactions. J. Clin. Invest. 113, 285–301 (2004).

    Article  CAS  Google Scholar 

  45. Tang, Y. S. et al. Incrimination of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) as a candidate sensor of physiological folate deficiency. J. Biol. Chem. 286, 39100–39115 (2011).

    Article  CAS  Google Scholar 

  46. Banci, L. et al. N-terminal domains mediate [2Fe–2S] cluster transfer from glutaredoxin-3 to anamorsin. Nat. Chem. Biol. 11, 772–778 (2015).

    Article  CAS  Google Scholar 

  47. Land, T. & Rouault, T. A. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol. Cell 2, 807–815 (1998).

    Article  CAS  Google Scholar 

  48. Vashisht, A. A. et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326, 718–721 (2009).

    Article  CAS  Google Scholar 

  49. Wohlschlegel, J. A. Identification of SUMO-conjugated proteins and their SUMO attachment sites using proteomic mass spectrometry. Methods Mol. Biol. 497, 33–49 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institutes of Diabetes and Digestive and Kidney Diseases and the Office of Dietary Supplements, Office of the Director, National Institutes of Health. J.A.W. is supported by NIH grant nos. GM089778 and GM112763. We thank C. Outten (University of South Carolina) for plasmids and T. Stemmler (Wayne State University) for plasmids and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.J.P. and A.G.F. conceived and coordinated the study, designed, performed, and analyzed most experiments, prepared figures and wrote the paper. D.J.P. created BolA2-inducible cell lines and S.A. generated KH3 mutant plasmids. K.Z.B., A.V. and J.A.W. performed mass spectrometry experiments. C.C.P. conceived and coordinated the study, prepared the figures and wrote the paper. All authors analyzed results and approved the final version of the manuscript.

Corresponding author

Correspondence to Caroline C. Philpott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2 and Supplementary Figures 1–24

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.J., Frey, A.G., Palenchar, D.J. et al. A PCBP1–BolA2 chaperone complex delivers iron for cytosolic [2Fe–2S] cluster assembly. Nat Chem Biol 15, 872–881 (2019). https://doi.org/10.1038/s41589-019-0330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0330-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing