Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Host and microbiota metabolic signals in aging and longevity

Abstract

Aging is an inevitable biochemical process that adversely affects personal health and poses ever-increasing challenges to society. Recent research has revealed the crucial role of metabolism in regulating aging and longevity. During diverse metabolic processes, the host organism and their symbiotic partners—the microbiota—produce thousands of chemical products (metabolites). Emerging studies have uncovered specific metabolites that act as signaling molecules to actively regulate longevity. Here we review the latest progress in understanding the molecular mechanisms by which metabolites from the host and/or microbiota promote longevity. We also highlight state-of-the-art technologies for discovering, profiling and imaging aging- and longevity-regulating metabolites and for deciphering the molecular basis of their actions. The broad application of these technologies in aging research, together with future advances, will foster the systematic discovery of aging- and longevity-regulating metabolites and their signaling pathways. These metabolite signals should provide promising targets for developing new interventions to promote longevity and healthy aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures and mechanisms of aging-regulating host metabolites.
Fig. 2: Microbial metabolites in aging regulation.
Fig. 3: Mechanisms by which microbial metabolites regulate host longevity.
Fig. 4: Comparative metabolomics in aging research.
Fig. 5: Chemical proteomics for identifying metabolite-binding targets.
Fig. 6: Chemical imaging methods for aging-regulating metabolites.

Similar content being viewed by others

References

  1. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Tuikhar, N. et al. Comparative analysis of the gut microbiota in centenarians and young adults shows a common signature across genotypically non-related populations. Mech. Ageing Dev. 179, 23–35 (2019).

    Article  PubMed  Google Scholar 

  4. Clark, R. I. et al. Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell Rep. 12, 1656–1667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bana, B. & Cabreiro, F. The microbiome and aging. Annu. Rev. Genet. 53, 239–261 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Santoro, A. et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell. Mol. Life Sci. 75, 129–148 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, P. et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 6, e27014 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stebegg, M. et al. Heterochronic faecal transplantation boosts gut germinal centres in aged mice. Nat. Commun. 10, 2443 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature 568, 43–48 (2019). Using a computational algorithm, this study demonstrated genomic structural variations within the microbiota that are associated with host disease risk factors, in particular, variations that may influence the host by altering microbial metabolism.

    Article  CAS  PubMed  Google Scholar 

  11. Hulbert, A. J., Pamplona, R., Buffenstein, R. & Buttemer, W. A. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87, 1175–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Reis, R. J. S. et al. Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging 3, 125–147 (2011).

    Article  Google Scholar 

  13. Gonzalez‐Covarrubias, V. et al. Lipidomics of familial longevity. Aging Cell 12, 426–434 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Han, S. et al. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544, 185–190 (2017). Direct evidence showing that MUFAs, including OA, cis-vaccenic acid and palmitoleic acid, extend organism lifespan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steinbaugh, M. J. et al. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. eLife 4, e07836 (2015).

    Article  PubMed Central  Google Scholar 

  16. Lewis, K. N., Mele, J., Hayes, J. D. & Buffenstein, R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr. Comp. Biol. 50, 829–843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Imanikia, S., Sheng, M., Castro, C., Griffin, J. L. & Taylor, R. C. XBP-1 remodels lipid metabolism to extend longevity. Cell Rep. 28, 581–589 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O’Rourke, E. J., Kuballa, P., Xavier, R. & Ruvkun, G. ω-6 polyunsaturated fatty acids extend life span through the activation of autophagy. Gene Dev. 27, 429–440 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Qi, W. et al. The ω‐3 fatty acid α‐linolenic acid extends Caenorhabditis elegans lifespan via NHR‐49/PPARα and oxidation to oxylipins. Aging Cell 16, 1125–1135 (2017). Direct evidence showing lifespan extension by a PUFA, α-linolenic acid, as well as the discovery of a spontaneously oxidized product from a PUFA that extends lifespan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oh, D. Y. et al. GPR120 is an ω-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furuhashi, M. & Hotamisligil, G. S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7, 489–503 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waluk, D. P. et al. Mammalian fatty acid amides of the brain and CNS. in ω-3 Fatty Acids in Brain and Neurological Health (eds. Watson, R. R. & Meester, F. D.) 87–107 (Academic Press, 2014).

  23. Lucanic, M. et al. N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 473, 226–229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu, J. et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425, 90–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Folick, A. et al. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347, 83–86 (2015). The discovery of oleoylethanolamine as a longevity-promoting metabolite and its signaling mechanism through the fatty acid-binding protein LBP-8 and the NHR-80/HNF4–NHR-49/PPARα nuclear receptor complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramachandran, P. V. et al. Lysosomal signaling promotes longevity by adjusting mitochondrial activity. Dev. Cell 48, 685–696 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neinast, M., Murashige, D. & Arany, Z. Branched chain amino acids. Annu. Rev. Physiol. 81, 139–164 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Alvers, A. L. et al. Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8, 353–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Mansfeld, J. et al. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nat. Commun. 6, 10043 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science 312, 927–930 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Lynch, C. J. & Adams, S. H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10, 723–736 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fuchs, S. et al. A metabolic signature of long life in Caenorhabditis elegans. BMC Biol. 8, 14 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. D’Antona, G. et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 12, 362–372 (2010).

    Article  PubMed  CAS  Google Scholar 

  34. Solon-Biet, S. M. et al. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat. Metab. 1, 532–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Richardson, N. E. et al. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and life span in mice. Nat. Aging 1, 73–86 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Clarke, G. et al. Gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dalile, B., Oudenhove, L. V., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. 16, 461–478 (2019).

    Article  Google Scholar 

  38. Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short-chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Badal, V. D. et al. The gut microbiome, aging, and longevity: a systematic review. Nutrients 12, 3759 (2020).

    Article  PubMed Central  Google Scholar 

  40. Salazar, N. et al. Age-associated changes in gut microbiota and dietary components related with the immune system in adulthood and old age: a cross-sectional study. Nutrients 11, 1765 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  41. Saraswati, S. & Sitaraman, R. Aging and the human gut microbiota—from correlation to causality. Front. Microbiol. 5, 764 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bodogai, M. et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. 10, eaat4271 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Fernando, W. M. A. D. B. et al. Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J. Alzheimer’s Dis. 74, 91–99 (2020).

    Article  CAS  Google Scholar 

  44. Kim, S. Y. et al. Sodium butyrate inhibits high cholesterol-induced neuronal amyloidogenesis by modulating NRF2 stabilization-mediated ROS levels: involvement of NOX2 and SOD1. Cell Death Dis. 11, 469 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fellows, R. et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat. Commun. 9, 105 (2018). This study revealed that microbiota-derived SFCAs are regulators of epigenetics, a hallmark of host aging.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Krautkramer, K. A. et al. Diet–microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell 64, 982–992 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McDonald, P., Maizi, B. M. & Arking, R. Chemical regulation of mid- and late-life longevities in Drosophila. Exp. Gerontol. 48, 240–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Whitfield, C., Wear, S. S. & Sande, C. Assembly of bacterial capsular polysaccharides and exopolysaccharides. Annu. Rev. Microbiol. 74, 521–543 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Ma, C. et al. The effects of exopolysaccharides and exopolysaccharide-producing Lactobacillus on the intestinal microbiome of zebrafish (Danio rerio). BMC Microbiol. 20, 300 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han, B. et al. Microbial genetic composition tunes host longevity. Cell 169, 1249–1262 (2017). The discovery of colanic acid as a pro-longevity bacterial polysaccharide that acts by regulating host mitochondrial dynamics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Torres-Cabassa, A. S. & Gottesman, S. Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J. Bacteriol. 169, 981–989 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hartsough, L. A. et al. Optogenetic control of gut bacterial metabolism to promote longevity. eLife 9, e56849 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Amador‐Noguez, D., Yagi, K., Venable, S. & Darlington, G. Gene expression profile of long‐lived Ames dwarf mice and Little mice. Aging Cell 3, 423–441 (2004).

    Article  PubMed  CAS  Google Scholar 

  56. Amador‐Noguez, D. et al. Alterations in xenobiotic metabolism in the long‐lived Little mice. Aging Cell 6, 453–470 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. Lee, B. C. et al. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat. Commun. 5, 3592 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Bárcena, C. et al. Methionine restriction extends lifespan in progeroid mice and alters lipid and bile acid metabolism. Cell Rep. 24, 2392–2403 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cheng, S. et al. Distinct metabolomic signatures are associated with longevity in humans. Nat. Commun. 6, 6791 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Burstein, M. T. et al. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan. Cell Cycle 11, 3443–3462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Staats, S. et al. Lithocholic acid improves the survival of Drosophila melanogaster. Mol. Nutr. Food Res. 62, 1800424 (2018).

    Article  CAS  Google Scholar 

  62. Ma, J. et al. Gut microbiota remodeling reverses aging-associated inflammation and dysregulation of systemic bile acid homeostasis in mice sex-specifically. Gut Microbes 11, 1450–1474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Joyce, S. A. & Gahan, C. G. M. Bile acid modifications at the microbe–host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu. Rev. Food Sci. Technol. 7, 313–333 (2015).

    Article  CAS  Google Scholar 

  64. Honda, K. et al. Identification of unique bile acid-metabolizing bacteria from the microbiome of centenarians. Preprint at In Review https://doi.org/10.21203/rs.3.rs-115113/v1 (2020).

  65. Minois, N., Carmona-Gutierrez, D. & Madeo, F. Polyamines in aging and disease. Aging 3, 716–732 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Matsumoto, M. et al. Impact of intestinal microbiota on intestinal luminal metabolome. Sci. Rep. 2, 233 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Minois, N. Molecular basis of the ‘anti-aging’ effect of spermidine and other natural polyamines—a mini-review. Gerontology 60, 319–326 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Das, R. & Kanungo, M. S. Activity and modulation of ornithine decarboxylase and concentrations of polyamines in various tissues of rats as a function of age. Exp. Gerontol. 17, 95–103 (1982).

    Article  CAS  PubMed  Google Scholar 

  69. Pucciarelli, S. et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuv. Res. 15, 590–595 (2012).

    Article  CAS  Google Scholar 

  70. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Soda, K. Biological effects of polyamines on the prevention of aging-associated diseases and on lifespan extension. Food Sci. Technol. Res. 21, 145–157 (2015).

    Article  CAS  Google Scholar 

  72. Edwards, C. et al. d-β-hydroxybutyrate extends lifespan in C. elegans. Aging 6, 621–644 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pryor, R. et al. Host–microbe–drug–nutrient screen identifies bacterial effectors of metformin therapy. Cell 178, 1299–1312 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gupta, V. K. et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 16, 1453–1460 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Matsumoto, M., Kurihara, S., Kibe, R., Ashida, H. & Benno, Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS ONE 6, e23652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kibe, R. et al. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci. Rep. 4, 4548 (2014). This study identified microbiota-derived polyamines that improve host longevity and age-associated adversities.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kiechl, S. et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am. J. Clin. Nutr. 108, 371–380 (2018).

    Article  PubMed  Google Scholar 

  78. Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease. Science 359, eaan2788 (2018).

    Article  PubMed  CAS  Google Scholar 

  79. Lin, C.-C. J. & Wang, M. C. Microbial metabolites regulate host lipid metabolism through NR5A–Hedgehog signalling. Nat. Cell Biol. 19, 550–557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, J. et al. Young versus aged microbiota transplants to germ-free mice: increased short-chain fatty acids and improved cognitive performance. Gut Microbes 12, 1–14 (2020).

    Article  PubMed  Google Scholar 

  81. Duncan, K. D., Fyrestam, J. & Lanekoff, I. Advances in mass spectrometry based single-cell metabolomics. Analyst 144, 782–793 (2018).

    Article  Google Scholar 

  82. Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schorn, M. A. et al. A community resource for paired genomic and metabolomic data mining. Nat. Chem. Biol. 17, 363–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Medema, M. H. The year 2020 in natural product bioinformatics: an overview of the latest tools and databases. Nat. Prod. Rep. 38, 301–306 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Özcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Nunes, A. F. et al. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol. Neurobiol. 45, 440–454 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Zhuang, S., Li, Q., Cai, L., Wang, C. & Lei, X. Chemoproteomic profiling of bile acid interacting proteins. ACS Cent. Sci. 3, 501–509 (2017). In this chemical proteomic study, a cholic acid-based diazirine alkyne probe was used to identify potential targets for previously unknown mechanisms of bile acids in aging regulation, including their function in ER stress regulation and Alzheimer’s disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Piazza, I. et al. A map of protein–metabolite interactions reveals principles of chemical communication. Cell 172, 358–372 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Huber, K. V. M. et al. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat. Methods 12, 1055–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Niphakis, M. J. et al. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bhalla, N., Jolly, P., Formisano, N. & Estrela, P. Introduction to biosensors. Essays Biochem. 60, 1–8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mohsin, M., Abdin, M. Z., Nischal, L., Kardam, H. & Ahmad, A. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosens. Bioelectron. 50, 72–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Yoshida, T., Nakajima, H., Takahashi, S., Kakizuka, A. & Imamura, H. OLIVe: a genetically encoded fluorescent biosensor for quantitative imaging of branched-chain amino acid levels inside single living cells. ACS Sens. 4, 3333–3342 (2019). This study using a FRET-based genetically encoded biosensor for BCAAs demonstrated an advanced technique to quantitatively image BCAA levels in various subcellular compartments on the single-cell level and revealed regulation of BCAA levels by the cellular nutritional environment.

    Article  CAS  PubMed  Google Scholar 

  94. Wang, P. et al. Label‐free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. 52, 13042–13046 (2013).

    Article  CAS  Google Scholar 

  95. Fu, D. et al. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. J. Am. Chem. Soc. 136, 8820–8828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, A. J. et al. Fingerprint stimulated Raman scattering imaging reveals retinoid coupling lipid metabolism and survival. ChemPhysChem 19, 2500–2506 (2018). A spatiotemporal dynamic study of retinoids with SRS that positively correlated retinoids with fat storage and survival in dauers and with fat unsaturation and lifespan upon feeding with a high-glucose diet in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu, Y., Mutlu, A. S., Liu, H. & Wang, M. C. High-throughput screens using photo-highlighting discover BMP signaling in mitochondrial lipid oxidation. Nat. Commun. 8, 865 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Mutlu, A. S., Gao, S. M., Zhang, H. & Wang, M. C. Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans. Nat. Commun. 11, 1450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01AG045183 (M.C.W.), R01AT009050 (M.C.W.), R01AG062257 (M.C.W.), P01AG066606 (M.C.W.) and DP1DK113644 (M.C.W.) and by the Welch Foundation (M.C.W.). M.C.W. is a Howard Hughes Medical Institute Investigator. We apologize to colleagues whose work was not cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng C. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Filipe Cabreiro, Neha Garg, François Leulier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Hu, G. & Wang, M.C. Host and microbiota metabolic signals in aging and longevity. Nat Chem Biol 17, 1027–1036 (2021). https://doi.org/10.1038/s41589-021-00837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00837-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research