Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An atypical RNA quadruplex marks RNAs as vectors for gene silencing

Abstract

The addition of poly(UG) (‘pUG’) repeats to 3′ termini of mRNAs drives gene silencing and transgenerational epigenetic inheritance in the metazoan Caenorhabditis elegans. pUG tails promote silencing by recruiting an RNA-dependent RNA polymerase (RdRP) that synthesizes small interfering RNAs. Here we show that active pUG tails require a minimum of 11.5 repeats and adopt a quadruplex (G4) structure we term the pUG fold. The pUG fold differs from known G4s in that it has a left-handed backbone similar to Z-RNA, no consecutive guanosines in its sequence, and three G quartets and one U quartet stacked non-sequentially. The compact pUG fold binds six potassium ions and brings the RNA ends into close proximity. The biological importance of the pUG fold is emphasized by our observations that porphyrin molecules bind to the pUG fold and inhibit both gene silencing and binding of RdRP. Moreover, specific 7-deaza substitutions that disrupt the pUG fold neither bind RdRP nor induce RNA silencing. These data define the pUG fold as a previously unrecognized RNA structural motif that drives gene silencing. The pUG fold can also form internally within larger RNA molecules. Approximately 20,000 pUG-fold sequences are found in noncoding regions of human RNAs, suggesting that the fold probably has biological roles beyond gene silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: pUG RNA function and folding is length-dependent.
Fig. 2: NMR data showing formation of three distinct G quartets in (GU)12.
Fig. 3: X-ray crystal structure of the (GU)12–NMM complex.
Fig. 4: The pUG fold is a left-handed G4 with a central Z-like backbone conformation.
Fig. 5: Silencing activity of pUG RNAs is blocked by NMM and substitution with 7-deaza-G.
Fig. 6: 7-deaza-G substitutions and NMM prevent interactions between GU repeats and RRF-1.

Similar content being viewed by others

Data availability

The model for (GU)11.5 bound to NMM has been deposited in the Protein Data Bank under accession code 7MKT. PDB deposition files for PDB 7MKT are provided in Supplementary Data 1. Source data are provided with this paper.

Code availability

The Python script for positional analysis of pUG repeat sequences in the human genome is available for download at https://doi.org/10.5281/zenodo.6964887.

References

  1. Yu, S. & Kim, V. N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. 21, 542–556 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Preston, M. A. et al. Unbiased screen of RNA tailing activities reveals a poly(UG) polymerase. Nat. Methods 16, 437–445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shukla, A. et al. poly(UG)-tailed RNAs in genome protection and epigenetic inheritance. Nature 582, 283–288 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shukla, A., Perales, R. & Kennedy, S. piRNAs coordinate poly(UG) tailing to prevent aberrant and perpetual gene silencing. Curr. Biol. 31, 4473–4485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Butcher, S. E. & Pyle, A. M. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns and networks. Acc. Chem. Res. 44, 1302–1311 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Banco, M. & Ferre-D’Amare, A. The emerging structural complexity of G-quadruplex RNAs. RNA 27, 390–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Varshney, D. et al. RNA G-quadruplex structures control ribosomal protein production. Sci. Rep. 11, 22735 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dumas, L., Herviou, P., Dassi, E., Cammas, A. & Millevoi, S. G-quadruplexes in RNA biology: recent advances and future directions. Trends Biochem. Sci. 46, 270–283 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Fay, M. M., Lyons, S. M. & Ivanov, P. RNA G-quadruplexes in biology: principles and molecular mechanisms. J. Mol. Biol. 429, 2127–2147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakanishi, C. & Seimiya, H. G-quadruplex in cancer biology and drug discovery. Biochem. Biophys. Res. Commun. 531, 45–50 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Varshney, D., Spiegel, J., Zyner, K., Tannahill, D. & Balasubramanian, S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 21, 459–474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wolfe, A. L. et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513, 65–70 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeraati, M. et al. Cancer-associated noncoding mutations affect RNA G-quadruplex-mediated regulation of gene expression. Sci. Rep. 7, 708 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf5371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Del Villar-Guerra, R., Trent, J. O. & Chaires, J. B. G-quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. Int. Ed. 57, 7171–7175 (2018).

    Article  Google Scholar 

  16. Conlon, E. G. et al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. eLife 5, e17820 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Reddy, K., Zamiri, B., Stanley, S. Y. R., Macgregor, R. B. Jr. & Pearson, C. E. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J. Biol. Chem. 288, 9860–9866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martadinata, H., Heddi, B., Lim, K. W. & Phan, A. T. Structure of long human telomeric RNA (TERRA): G-quadruplexes formed by four and eight UUAGGG repeats are stable building blocks. Biochemistry 50, 6455–6461 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Mei, Y. et al. TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Sci. Rep. 11, 3509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung, W. J. et al. Structure of a left-handed DNA G-quadruplex. Proc. Natl Acad. Sci. USA 112, 2729–2733 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hall, K., Cruz, P., Tinoco, I. Jr, Jovin, T. M. & van de Sande, J. H. ‘Z-RNA’—a left-handed RNA double helix. Nature 311, 584–586 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Placido, D., Brown, B. A. II, Lowenhaupt, K., Rich, A. & Athanasiadis, A. A left-handed RNA double helix bound by the Zα domain of the RNA-editing enzyme ADAR1. Structure 15, 395–404 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Masiero, S. et al. A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Org. Biomol. Chem. 8, 2683–2692 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, M. C. et al. Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature 558, 465–469 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weng, X. et al. Keth-seq for transcriptome-wide RNA structure mapping. Nat. Chem. Biol. 16, 489–492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, S. Y. et al. Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat. Commun. 9, 4730 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang, X. et al. RNA G-quadruplex structures exist and function in vivo in plants. Genome Biol. 21, 226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Puig Lombardi, E. & Londono-Vallejo, A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 48, 1–15 (2020).

    Article  PubMed  Google Scholar 

  29. Buratti, E. & Baralle, F. E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Buratti, E. & Baralle, F. E. Multiple roles of TDP-43 in gene expression, splicing regulation and human disease. Front. Biosci. 13, 867–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Buratti, E., Brindisi, A., Pagani, F. & Baralle, F. E. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am. J. Hum. Genet. 74, 1322–1325 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buratti, E. et al. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 20, 1774–1784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lukavsky, P. J. et al. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat. Struct. Mol. Biol. 20, 1443–1449 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Ishiguro, A., Katayama, A. & Ishihama, A. Different recognition modes of G-quadruplex RNA between two ALS/FTLD-linked proteins TDP-43 and FUS. FEBS Lett. 595, 310–323 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Ishiguro, A. et al. Molecular dissection of ALS-linked TDP-43 - involvement of the Gly-rich domain in interaction with G-quadruplex mRNA. FEBS Lett. 594, 2254–2265 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Ishiguro, A., Kimura, N., Watanabe, Y., Watanabe, S. & Ishihama, A. TDP-43 binds and transports G-quadruplex-containing mRNAs into neurites for local translation. Genes Cells 21, 466–481 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hallegger, M. et al. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184, 4680–4696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kramer, M. et al. Alternative 5′ untranslated regions are involved in expression regulation of human heme oxygenase-1. PLoS ONE 8, e77224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Toth, G., Gaspari, Z. & Jurka, J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967–981 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weber, J. L. & May, P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Boraska Jelavic, T. et al. Microsatelite GT polymorphism in the toll-like receptor 2 is associated with colorectal cancer. Clin. Genet. 70, 156–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Gill, A. J., Garza, R., Ambegaokar, S. S., Gelman, B. B. & Kolson, D. L. Heme oxygenase-1 promoter region (GT)n polymorphism associates with increased neuroimmune activation and risk for encephalitis in HIV infection. J. Neuroinflammation 15, 70 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Noriega, V. et al. The genotype of the donor for the (GT)n polymorphism in the promoter/enhancer of FOXP3 is associated with the development of severe acute GVHD but does not affect the GVL effect after myeloablative HLA-identical allogeneic stem cell transplantation. PLoS ONE 10, e0140454 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lei, S. F. et al. The (GT)n polymorphism and haplotype of the COL1A2 gene, but not the (AAAG)n polymorphism of the PTHR1 gene, are associated with bone mineral density in Chinese. Hum. Genet. 116, 200–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Cai, Q. et al. Association of breast cancer risk with a GT dinucleotide repeat polymorphism upstream of the estrogen receptor-α gene. Cancer Res. 63, 5727–5730 (2003).

    CAS  PubMed  Google Scholar 

  47. Keneme, B. & Sembene, M. GTn repeat microsatellite instability in uterine fibroids. Front. Genet. 10, 810 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Daenen, K. E., Martens, P. & Bammens, B. Association of HO-1 (GT)n promoter polymorphism and cardiovascular disease: a reanalysis of the literature. Can. J. Cardiol. 32, 160–168 (2016).

    Article  PubMed  Google Scholar 

  49. Dias, C., Elzein, S., Sladek, R. & Goodyer, C. G. Sex-specific effects of a microsatellite polymorphism on human growth hormone receptor gene expression. Mol. Cell. Endocrinol. 492, 110442 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Groman, J. D. et al. Variation in a repeat sequence determines whether a common variant of the cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am. J. Hum. Genet. 74, 176–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Hefferon, T. W., Groman, J. D., Yurk, C. E. & Cutting, G. R. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc. Natl Acad. Sci. USA 101, 3504–3509 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao, P. S. et al. Variation in dinucleotide (GT) repeat sequence in the first exon of the STAT6 gene is associated with atopic asthma and differentially regulates the promoter activity in vitro. J. Med. Genet. 41, 535–539 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bhattacharjee, A. J. et al. Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis (N-methyl-4-pyridyl)porphyrin. Biochimie 93, 1297–1309 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Nicoludis, J. M., Barrett, S. P., Mergny, J. L. & Yatsunyk, L. A. Interaction of human telomeric DNA with N-methyl mesoporphyrin IX. Nucleic Acids Res. 40, 5432–5447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dingley, A. J., Nisius, L., Cordier, F. & Grzesiek, S. Direct detection of N−HN hydrogen bonds in biomolecules by NMR spectroscopy. Nat. Protoc. 3, 242–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Majumdar, A. & Patel, D. J. Identifying hydrogen bond alignments in multistranded DNA architectures by NMR. Acc. Chem. Res. 35, 1–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Fitzkee, N. C. & Bax, A. Facile measurement of 1H-15N residual dipolar couplings in larger perdeuterated proteins. J. Biomol. NMR 48, 65–70 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. Use of Life Sciences Collaborative Access Team was supported by Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (grant no. 085P1000817). Use of GM/CA@APS was funded by the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006 and P30GM138396). The Collaborative Crystallography Core was supported in part by the Department of Biochemistry, UW Madison endowment. Circular dichroism data were obtained at the University of Wisconsin–Madison Biophysics Instrumentation Facility, which was established with support from the University of Wisconsin–Madison and grants nos. BIR-9512577 (NSF) and S10RR13790 (NIH). This study made use of the National Magnetic Resonance Facility at Madison, which is supported by NIH grant no. P41GM136463. This study was supported by NIH/NIGMS grants no. R01GM050942 to M.W., R01GM088289 to S.G.K. and R35 GM118131 to S.E.B.

Author information

Authors and Affiliations

Authors

Contributions

S.R. performed CD experiments, electrophoretic mobility shift assays and RNA crystallization. J.Y. and S.G.K. performed RNA-silencing experiments. E.J.M. and S.R. crystallized (GU)11.5–NMM and (GU)12–NMM complexes. C.A.B. collected diffraction data, solved the crystallographic phase problem, and refined the structure of the (GU)11.5–NMM and (GU)12–NMM complexes. Y.N. created the initial models for the (GU)11.5–NMM and (GU)12–NMM complexes. C.A.E. and R.J.P. made NMR samples and analyzed NMR data along with S.E.B. C.A.E. analyzed genomic data. R.J.P. measured NMM and hemin binding to (GU)11.5. M.T. collected NMR data. E.J.M., R.V. and S.E.B. contributed to interpretation of structural data. M.W., S.G.K. and S.E.B. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Scott G. Kennedy or Samuel E. Butcher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Konstantinos Tzelepis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Sara Osman, in collaboration with the Nature Structural & Molecular Biology editorial team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Silencing assay with AA substitutions.

a, oma-1(zu405ts) silencing assay with AA substitutions within the pUG tail (GU)12.5. The pUG tail sequence is shown below the plot, with location of AA substitutions indicated at the numbered positions. Data are mean ± s.d. Number of independent experiments (injected animals), n = 9 (no injection), 18 (pUG(12.5)), 8 (1), 10 (2), 8 (3), 9 (4), 6 (5), 9 (6), 21 (7), 10 (8), 10 (9), 10 (10), and 14 (11). **, p-value < 0.005 (p-value = 1.88E-04 (1), 1.58E-04 (2), 6.38E-04 (3), 6.99E-04 (4), 6.17E-04 (5), 7.98E-05 (6), 1.10E-07 (7), 1.60E-04 (8), 8.50E-05 (9), 9.86E-06 (10), and 2.18E-07 (11)) (two-sided Student’s t-test). b, oma-1(zu405ts) silencing assay of (GU)13.5 with AA insertions, sequences indicated as in A. Data are mean ± s.d. Number of independent experiments (injected animals), n = 3 (no injection), 6 (pUG(13.5)), 10 (1), 9 (2), 4 (3), 8 (4), and 9 (5). *, p-value < 0.05 (p-value = 3.35E-02 (1); **, p-value < 0.005 (p-value = 4.92E-03 (4)) (two-sided Student’s t-test). c, CD secondary structure analysis of (GU)13.5 with AA substitution at position 2, compared to (GU)12.

Source data

Extended Data Fig. 2 CD monitored thermal denaturation of (GU)11.5 in 150 mM KCl.

CD monitored thermal denaturation of (GU)11.5 in 150 mM KCl. a, Three different wavelengths show a single cooperative melting transition at 51.5 °C. b, Thermal melting data measured from low to high temperature and high to low temperature show minimal hysteresis (< 3 °C).

Source data

Extended Data Fig. 3 pUG RNA is unfolded by 7 deaza G substitution.

a, pUG RNA is unfolded by 7 deaza G substitution. Native gel analysis of (GU)12 electrophoretic mobility. Lane1: (AC)12 was used as a marker for single stranded RNA (ssRNA). Lane 2: 7 deaza G substitution of (GU)12 produces ssRNA with the same electrophoretic mobility as (AC)12. Lane 3: (GU)12 RNA runs with anomalously slow electrophoretic mobility. A representative gel is shown from experiments that were performed in triplicate, all of which produced the same results. b, CD analysis of unfolded 7 deaza G substituted (GU)12 compared to (GU)12. c, The pUG fold electrophoretic mobility is concentration independent. Lane 1: double stranded RNA (dsRNA) was enforced by heat annealing (GU)12 to excess (AC)12 complementary ssRNA. Lane 2: ssRNA maker (AC)12. Lanes 3-6: (GU)12 at 10, 5, 1, and 0.5 μM, respectively. A representative gel is shown from experiments that were performed in triplicate, all of which produced the same results.

Source data

Extended Data Fig. 4 The pUG fold binds the porphyrins NMM and hemin.

The pUG fold binds the porphyrins NMM and hemin. a, Chemical structure of NMM b, The NMM absorbance of free NMM (2.2 μM, red, λmax=378 nm) displays a hyperchromic shift (black, λmax=397 nM) upon addition of increasing amount of the pUG RNA (GU)11.5. c, Fitting of data in A to an equilibrium binding equation. The results of 3 independent experiments are plotted in black, blue and red. d, Chemical Structure of hemin e, The absorbance of free hemin (7.3 μM red, λmax=370 nm) displays a hyperchromic shift (black, λmax=402 nM) upon addition of increasing amount of the pUG RNA (GU)11.5. f, Fitting of data in B to an equilibrium binding equation. The results of 3 independent experiments are plotted in black, blue and red.

Source data

Extended Data Fig. 5 Electron density map for (GU)12-NMM.

a, Electron density map for (GU)12-NMM contoured at 1 r.m.s.d. b, Electron density for NMM. c, Electron density for the G1 quartet. d, Electron density for the G3 quartet. e, Electron density for the G5 quartet. F. Electron density for the U4 quartet.

Extended Data Fig. 6 Residual dipolar coupling analysis of free structure in solution vs. crystal.

Measured residual dipolar couplings (RDCs) vs. predicted RDCs from the (GU)12-NMM crystal structure. NMR RDCs were measured for 13C,15N G-labeled (GU)12 RNA (observed) and plotted against the predicted RDC values from the (GU)12-NMM crystal structure, R2 = 0.95.

Source data

Extended Data Fig. 7 End to end distance of A-form vs pUG fold RNA.

End to end distance of A-form vs pUG fold RNA. The sequence of (GU)11.5 is color coded as in Fig. 3, except with end nucleotides highlighted in red. The A-form RNA geometry was modeled using PyMOL software version 2.5.2.

Extended Data Fig. 8 CD spectra of (GU)12 and the (GU)12-NMM complex.

a, CD spectra of (GU)12 and the (GU)12-NMM complex. b, Thermal denaturation of (GU)11.5-NMM complex (1:1) monitored at three different wavelengths. The melting temperature of (GU)11.5-NMM is 59.7 °C.

Source data

Extended Data Fig. 9 Number and distribution pUG fold coding sequences with 11.5 or more GT repeats in the human vs C. elegans genomes.

Number and distribution pUG fold coding sequences with 11.5 or more GT repeats in the human vs C. elegans genomes.

Source data

Extended Data Fig. 10 Genomic analysis of human intron sequences with dinucleotide repeat tracts of 11.5 or more GU repeats.

Genomic analysis of human intron sequences with dinucleotide repeat tracts of 11.5 or more GU repeats. Hits are plotted with respect to their distance from splice sites.

Source data

Supplementary information

Supplementary Information

Supplementary Table 1.

Reporting Summary

Peer Review File

Supplementary Video 1

Video of the RNA structure.

Supplementary Data 1

PDB deposition files for PDB 7MKT, Source Data Figs. 3 and 4 and Extended Data Figs. 5 and 7.

Source data

Source Data Fig. 1

Statistical source data, unprocessed gels.

Source Data Fig. 2

1D and 2D NMR data, unprocessed and processed.

Source Data Fig. 5

Statistical source data, unprocessed gels.

Source Data Fig 6

Unprocessed western blots.

Source Data Extended Data Fig. 1

Statistical source data, unprocessed and processed CD data.

Source Data Extended Data Fig. 2

Unprocessed and processed CD data.

Source Data Extended Data Fig. 3

Unprocessed gels, unprocessed and processed CD data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig 6

Statistical source data.

Source Data Extended Data Fig 8

Unprocessed and processed CD data.

Source Data Extended Data Fig 9

Statistical source data.

Source Data Extended Data Fig 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roschdi, S., Yan, J., Nomura, Y. et al. An atypical RNA quadruplex marks RNAs as vectors for gene silencing. Nat Struct Mol Biol 29, 1113–1121 (2022). https://doi.org/10.1038/s41594-022-00854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00854-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing