Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and quantitative analysis of multicenter luminescence materials for sensing function

Abstract

Luminescent sensing materials are attractive for environmental analysis due to their potential for high selectivity, excellent sensitivity and rapid (even instantaneous) response towards targeted analytes in diverse sample matrices. Many types of analytes have been detected in samples of wastewater for environmental protection, reagents and products in industrial production of drugs and pesticides, and biological markers in blood and urine for early diagnosis. It is still challenging, however, to develop appropriate materials with optimal sensing function for a targeted analyte. Here we synthesize metal–organic frameworks (MOFs) bearing multiple luminescent centers, such as metal cations (for example, Eu3+ and Tb3+), organic ligands and guests, which are chosen for optimal selectivity for the analytes of interest, including industrial synthetic intermediates and chiral drugs. Interaction between the metal node, ligand, guest and analyte results in a complex system with different luminescence properties compared with the porous MOF on its own. The operation time for the synthesis is usually less than 4 h; the quick screening for sensitivity and selectivity takes ~0.5 h and includes steps to optimize the energy levels and spectrum parameters. It can be used to accelerate the discovery of advanced sensing materials for practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fitting modes for the quenching- and enhancement-type sensing.
Fig. 2: Synthetic schemes for the four luminescence sensing materials.
Fig. 3: Schematic illustrations to detect single or multiple analytes.
Fig. 4: Analysis models for quantitative detection.
Fig. 5: Synthesis of EuTb-FDA.
Fig. 6: Synthesis of IRMOF-74-II-Mg-C-Tb.
Fig. 7: Synthesis of Zn-MOF-C-Tb.
Fig. 8: Synthesis of EuTb@NKU-102.
Fig. 9: Detection procedure.
Fig. 10: Data analysis.

Similar content being viewed by others

Data availability

All relevant data supporting this study’s findings are available within the article and at https://doi.org/10.6084/m9.figshare.21482904.

Code availability

The program’s original code for three-component calculation, programmed using Python, is provided as an example in Supplementary Information.

References

  1. Potyrailo, R. A. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem. Rev. 116, 11877–11923 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Li, Z., Askim, J. R. & Suslick, K. S. The optoelectronic nose: colorimetric and fluorometric sensor arrays. Chem. Rev. 119, 231–292 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Mako, T. L., Racicot, J. M. & Levine, M. Supramolecular luminescent sensors. Chem. Rev. 119, 322–477 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Li, H. Y., Zhao, S. N., Zang, S. Q. & Li, J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 49, 6364–6401 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, X. N., Ward, B. B. & Sigman, D. M. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem. Rev. 120, 5308–5351 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Y. et al. Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51, 3759–3793 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Koklu, A. et al. Organic bioelectronic devices for metabolite sensing. Chem. Rev. 122, 4581–4635 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y. et al. Preparation of novel chiral stationary phases based on the chiral porous organic cage by thiol-ene click chemistry for enantioseparation in HPLC. Anal. Chem. 94, 4961–4969 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, Y., Zeng, H., Zhu, X. W., Lu, W. & Li, D. Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chem. Soc. Rev. 50, 4484–4513 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Whiting, G. T., Nikolopoulos, N., Nikolopoulos, I., Chowdhury, A. D. & Weckhuysen, B. M. Visualizing pore architecture and molecular transport boundaries in catalyst bodies with fluorescent nanoprobes. Nat. Chem. 11, 23–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Wales, D. J. et al. Gas sensing using porous materials for automotive applications. Chem. Soc. Rev. 44, 4290–4321 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Gu, L. L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, J. J., Chizhik, A. I., Chu, S. & Jin, D. Y. Single-particle spectroscopy for functional nanomaterials. Nature 579, 41–50 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Kumar, R. et al. Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem. Rev. 119, 9657–9721 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, T., Zhou, L. P., Guo, X. Q., Cai, L. X. & Sun, Q. F. Adaptive self-assembly and induced-fit transformations of anion-binding metal–organic macrocycles. Nat. Commun. 8, 15898 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qin, Y., Liu, X., Jia, P. P., Xu, L. & Yang, H. B. BODIPY-based macrocycles. Chem. Soc. Rev. 49, 5678–5703 (2020).

    Article  CAS  Google Scholar 

  17. Lustig, W. P. et al. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Li, Z. J. et al. Achieving gas pressure-dependent luminescence from an AIEgen-based metal–organic framework. Nat. Commun. 13, 2142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, B. et al. A stable zirconium based metal–organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nat. Commun. 10, 3861 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Meng, Z. & Mirica, K. A. Covalent organic frameworks as multifunctional materials for chemical detection. Chem. Soc. Rev. 50, 13498–13558 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, R. Y. et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Kulkarni, R. et al. Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework. Nat. Commun. 10, 3228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin, R. B. et al. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 48, 1362–1389 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, B. et al. Microporous hydrogen-bonded organic framework for highly efficient turn-up fluorescent sensing of aniline. J. Am. Chem. Soc. 142, 12478–12485 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, S. Y. et al. Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal–organic framework sensor. Adv. Funct. Mater. 28, 1707169 (2018).

    Article  Google Scholar 

  26. Rao, X. et al. A highly sensitive mixed lanthanide metal–organic framework self-calibrated luminescent thermometer. J. Am. Chem. Soc. 135, 15559–15564 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Hu, Z. et al. Effective detection of mycotoxins by a highly luminescent metal–organic framework. J. Am. Chem. Soc. 137, 16209–16215 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, L. et al. Ultrafast water sensing and thermal imaging by a metal–organic framework with switchable luminescence. Nat. Commun. 8, 15985 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, J. C. et al. Confinement of pyridinium hemicyanine dye within an anionic metal–organic framework for two-photon-pumped lasing. Nat. Commun. 4, 2719 (2013).

    Article  PubMed  Google Scholar 

  30. Sun, C. Y. et al. Efficient and tunable white-light emission of metal–organic frameworks by iridium-complex encapsulation. Nat. Commun. 4, 2717 (2013).

    Article  PubMed  Google Scholar 

  31. Hao, J. N. & Yan, B. Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal–organic framework sensor. Adv. Funct. Mater. 27, 1603856 (2017).

    Article  Google Scholar 

  32. Zhang, S. Y., Shi, W., Cheng, P. & Zaworotko, M. J. A mixed-crystal lanthanide zeolite-like metal–organic framework as a fluorescent indicator for lysophosphatidic acid, a cancer biomarker. J. Am. Chem. Soc. 137, 12203–12206 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Guo, Y. et al. Bilanthanide metal–organic frameworks for instant detection of 17β-estradiol, a vital physiological index. Small Struct. 3, 2100113 (2022).

    Article  CAS  Google Scholar 

  34. Zhou, J. et al. A bimetallic lanthanide metal–organic material as a self-calibrating color-gradient luminescent sensor. Adv. Mater. 27, 7072–7077 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Wanderley, M. M., Wang, C., Wu, C. D. & Lin, W. B. A chiral porous metal–organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 134, 9050–9053 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Han, Z. et al. Cation-induced chirality in a bifunctional metal–organic framework for quantitative enantioselective recognition. Nat. Commun. 10, 5117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Han, Z. et al. Bifunctionalized metal–organic frameworks for pore-size-dependent enantioselective sensing. Angew. Chem. Int. Ed. Engl. 61, e202204066 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Han, Z. et al. A multicenter metal–organic framework for quantitative detection of multi-component organic mixtures. CCS Chem. 4, 3238–3245 (2022).

    Article  CAS  Google Scholar 

  39. Wei, W., Lu, R., Tang, S. & Liu, X. Highly cross-linked fluorescent poly (cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase. J. Mater. Chem. A 3, 4604–4611 (2015).

    Article  CAS  Google Scholar 

  40. Dinda, D., Gupta, A., Shaw, B. K., Sadhu, S. & Saha, S. K. Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through FRET mechanism. ACS Appl. Mater. Interfaces 6, 10722–10728 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, J. et al. A superamplification effect in the detection of explosives by a fluorescent hyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics. Polym. Chem. 1, 426–429 (2010).

    Article  CAS  Google Scholar 

  42. Sun, X., Wang, Y. & Lei, Y. Fluorescence based explosive detection: from mechanisms to sensory materials. Chem. Soc. Rev. 44, 8019–8061 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, M. et al. A temperature-responsive smart europium metal–organic framework switch for reversible capture and release of intrinsic Eu3+ ions. Adv. Sci. 2, 1500012 (2015).

    Article  Google Scholar 

  44. Arunkumar, E., Ajayaghosh, A. & Daub, J. Selective calcium ion sensing with a bichromophoric squaraine foldamer. J. Am. Chem. Soc. 127, 3156–3164 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Chu, Q., Medvetz, D. A. & Pang, Y. A polymeric colorimetric sensor with excited-state intramolecular proton transfer for anionic species. Chem. Mater. 19, 6421–6429 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92156002, 21931004 and 22261132509), the Natural Science Foundation of Tianjin (18JCJQJC47200) and the Ministry of Education of China (B12015). W.S. acknowledges receipt of a Royal Society Newton Advanced Fellowship (NAF\R1\180297).

Author information

Authors and Affiliations

Authors

Contributions

Z.H. and K.W. organized the manuscript and made the figures. H.-C.Z. and P.C. oversaw the entire project. W.S. designed and supervised the project and prepared the manuscript. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Wei Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Mei Pan, Houqun Yuan and Dan Zhao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

Key references using this protocol

Han, Z. et al. Angew. Chem. Int. Ed. Engl. 61, e202204066 (2022): https://doi.org/10.1002/anie.202204066

Zhou, J. et al. Adv. Mater. 27, 7072–7077 (2015): https://doi.org/10.1002/adma.201502760

Han, Z. et al. Nat. Commun. 10, 5117 (2019): https://doi.org/10.1038/s41467-019-13090-9

Han, Z. et al. CCS Chem. 4, 3238–3245 (2022): https://doi.org/10.31635/ccschem.022.202101642

Key data used in this protocol Han, Z. et al. Angew. Chem. Int. Ed. Engl. 61, e202204066 (2022): https://doi.org/10.1002/anie.202204066

Zhou, J. et al. Adv. Mater. 27, 7072–7077 (2015): https://doi.org/10.1002/adma.201502760

Han, Z. et al. Nat. Commun. 10, 5117 (2019): https://doi.org/10.1038/s41467-019-13090-9

Han, Z. et al. CCS Chem. 4, 3238–3245 (2022): https://doi.org/10.31635/ccschem.022.202101642

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Table 1 and Software.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Wang, K., Zhou, HC. et al. Preparation and quantitative analysis of multicenter luminescence materials for sensing function. Nat Protoc 18, 1621–1640 (2023). https://doi.org/10.1038/s41596-023-00810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00810-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing