Table 1 Wien’s peaks for the energy and the entropy of radiation for different dispersion rules, corresponding to different values of the dispersion coefficient m.

From: Entropy of radiation: the unseen side of light

ϑ

B ϑ (T)dϑ

Dispersion rule

m

Energy

Entropy

ν 2

\(2\nu {B}_{{\nu }^{2}}(T)d\nu \)

frequency-squared

2

\(\frac{hc}{{k}_{B}\mathrm{(1.593624}\ldots )}\)

\(\frac{hc}{{k}_{B}\mathrm{(1.178179641}\ldots )}\)

ν

B ν (T)

linear frequency

3

\(\frac{hc}{{k}_{B}\mathrm{(2.821439}\ldots )}\)

\(\frac{hc}{{k}_{B}\mathrm{(2.538231893}\ldots )}\)

\(\sqrt{\nu }\)

\(\frac{1}{2\sqrt{\nu }}{B}_{\sqrt{\nu }}(T)d\nu \)

square root frequency

7/2

\(\frac{hc}{{k}_{B}\mathrm{(3.380946}\ldots )}\)

\(\frac{hc}{{k}_{B}\mathrm{(3.137016422}\ldots )}\)

log ν

\(\frac{1}{\nu }{B}_{\mathrm{log}\nu }(T)d\nu \)

logarithmic frequency

4

\(\frac{hc}{{k}_{B}\mathrm{(3.920690}\ldots )}\)

\(\frac{hc}{{k}_{B}\mathrm{(3.706085183}\ldots )}\)

log λ

\(\frac{1}{\lambda }{B}_{\mathrm{log}\lambda }(T)d\lambda \)

logarithmic wavelength

4

\(\frac{hc}{{k}_{B}\mathrm{(3.920690}\ldots )}\)

\(\frac{hc}{{k}_{B}\mathrm{(3.706085183}\ldots )}\)

\(\sqrt{\lambda }\)

\(\frac{1}{2\sqrt{\lambda }}{B}_{\sqrt{\lambda }}(T)d\lambda \)

square root wavelength

9/2

\(\frac{hc}{{k}_{B}\mathrm{(4.447304}\ldots )}\)

\(\frac{hc}{{k}_{B}\mathrm{(4.255382544}\ldots )}\)

λ

B λ (T)

linear wavelength

5

\(\frac{hc}{{k}_{B}\mathrm{(4.965114}\ldots )}\)

\(\frac{hc}{{k}_{B}\mathrm{(4.791267357}\ldots )}\)

λ 2

\(2\lambda {B}_{{\lambda }^{2}}(T)d\lambda \)

wavelength-squared

6

\(\frac{hc}{{k}_{B}\mathrm{(5.984901}\ldots )}\)

\(\frac{hc}{{k}_{B}\mathrm{(5.838126229}\ldots )}\)