Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts

Abstract

A critical technological roadblock to the widespread adoption of proton-exchange membrane fuel cells is the development of highly active and durable platinum-based catalysts for accelerating the sluggish oxygen reduction reaction, which has largely relied on anecdotal discoveries so far. While the oxygen binding energy ∆EO has been frequently used as a theoretical descriptor for predicting the activity, there is no known descriptor for predicting durability. Here we developed a binary experimental descriptor that captures both the strain and Pt transition metal coupling contributions through X-ray absorption spectroscopy and directly correlated the binary experimental descriptor with the calculated ∆EO of the catalyst surface. This leads to an experimentally validated Sabatier plot to predict both the catalytic activity and stability for a wide range of Pt-alloy oxygen reduction reaction catalysts. Based on the binary experimental descriptor, we further designed an oxygen reduction reaction catalyst wherein high activity and stability are simultaneously achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and comparison of sd-PtNi and fd-PtNi catalysts.
Fig. 2: Development of the BED and the Sabatier plot.
Fig. 3: Experimentally validated sd-PtNiCo catalyst with high activity and stability.
Fig. 4: Experimentally validated Sabatier plot of Pt-alloy catalysts and stability analysis.

Similar content being viewed by others

Data availability

The atomic coordinates of the DFT calculation data and simulated XANES data are available in the Supplementary Data. The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Wu, J. & Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 46, 1848–1857 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  3. Peng, Z. & Yang, H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4, 143–164 (2009).

    Article  CAS  Google Scholar 

  4. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Kodama, K., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 16, 140–147 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Rossmeisl, J., Karlberg, G. S., Jaramillo, T. & Nørskov, J. K. Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss. 140, 337–346 (2009).

    Article  Google Scholar 

  8. Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, Z. et al. Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 31, 1808115 (2019).

    Article  CAS  Google Scholar 

  11. Toda, T., Igarashi, H., Uchida, H. & Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146, 3750–3756 (1999).

    Article  CAS  Google Scholar 

  12. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Stephens, I. E. L. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 133, 5485–5491 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Z., Zhao, Z., Peng, B., Duan, X. & Huang, Y. Beyond extended surfaces: understanding the oxygen reduction reaction on nanocatalysts. J. Am. Chem. Soc. 142, 17812–17827 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Y., Cheng, T. & Goddard, W. A. III Atomistic explanation of the dramatically improved oxygen reduction reaction of jagged platinum nanowires, 50 times better than Pt. J. Am. Chem. Soc. 142, 8625–8632 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Bligaard, T. & Nørskov, J. K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007).

    Article  CAS  Google Scholar 

  20. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Cherevko, S., Kulyk, N. & Mayrhofer, K. J. J. Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy 29, 275–298 (2016).

    Article  CAS  Google Scholar 

  23. Calle-Vallejo, F. et al. Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chem. Sci. 8, 2283–2289 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bu, L. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Tian, X. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, C., Hwang, S. Y. & Peng, Z. Size-dependent oxygen reduction property of octahedral Pt–Ni nanoparticle electrocatalysts. J. Mater. Chem. A 2, 19778–19787 (2014).

    Article  CAS  Google Scholar 

  29. Wang, C. et al. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv. Funct. Mater. 21, 147–152 (2011).

    Article  CAS  Google Scholar 

  30. Huang, X. et al. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ. Sci. 7, 2957–2962 (2014).

    Article  CAS  Google Scholar 

  31. Fortunelli, A. et al. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts. Chem. Sci. 6, 3915–3925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gong, M. et al. Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization. Nanoscale 11, 20301–20306 (2019).

  33. Wang, T. et al. Sub-6 nm fully ordered L10-Pt–Ni–Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain. Adv. Energy Mater. 9, 1803771 (2019).

  34. Dutta, I. et al. Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst. J. Phys. Chem. C 114, 16309–16320 (2010).

    Article  CAS  Google Scholar 

  35. Hwang, B. J. et al. An investigation of structure−catalytic activity relationship for Pt−Co/C bimetallic nanoparticles toward the oxygenreduction reaction. J. Phys. Chem. C 111, 15267–15276 (2007).

    Article  CAS  Google Scholar 

  36. Moraweck, B., Renouprez, A. J., Hlil, E. K. & Baudoing-Savois, R. Alloying effects on X-ray absorption edges in nickel-platinum single crystals. J. Phys. Chem. 97, 4288–4292 (1993).

    Article  CAS  Google Scholar 

  37. Hlil, E. K., BaudoingSavois, R., Moraweck, B. & Renouprez, A. J. X-ray absorption edges in platinum-based alloys. 2. Influence of ordering and of the nature of the second metal. J. Phys. Chem. 100, 3102–3107 (1996).

    Article  CAS  Google Scholar 

  38. Chen, J. et al. Elucidating the many-body effect and anomalous Pt and Ni core level shifts in X-ray photoelectron spectroscopy of Pt–Ni alloys. J. Phys. Chem. C 124, 2313–2318 (2020).

    Article  CAS  Google Scholar 

  39. Mukerjee, S., Srinivasan, S., Soriaga, M. P. & Mcbreen, J. Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction: an in-situ XANES and EXAFS investigation. J. Electrochem. Soc. 142, 1409–1422 (1995).

  40. Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P. & Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Pápai, Z. & Pap, T. L. Analysis of peak asymmetry in chromatography. J. Chromatogr. A 953, 31–38 (2002).

    Article  PubMed  Google Scholar 

  42. Kuhn, M. & Sham, T. K. Charge redistribution and electronic behavior in a series of Au-Cu alloys. Phys. Rev. B 49, 1647–1661 (1994).

    Article  CAS  Google Scholar 

  43. Jia, Q. et al. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition–strain–activity relationship. ACS Nano 9, 387–400 (2015).

  44. Cao, L. et al. Differential surface elemental distribution leads to significantly enhanced stability of PtNi-based ORR catalysts. Matter 1, 1567–1580 (2019).

    Article  Google Scholar 

  45. Li, J. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 3, 124–135 (2019).

    Article  CAS  Google Scholar 

  46. Barcaro, G., Sementa, L. & Fortunelli, A. A grouping approach to homotop global optimization in alloy nanoparticles. Phys. Chem. Chem. Phys. 16, 24256–24265 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Hu, J. et al. Increasing stability and activity of core–shell catalysts by preferential segregation of oxide on edges and vertexes: oxygen reduction on Ti–Au@Pt/C. J. Am. Chem. Soc. 138, 9294–9300 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Jennings, P. C., Aleksandrov, H. A., Neyman, K. M. & Johnston, R. L. A DFT study of oxygen dissociation on platinum based nanoparticles. Nanoscale 6, 1153–1165 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Arán-Ais, R. M. et al. Elemental anisotropic growth and atomic-scale structure of shape-controlled octahedral Pt–Ni–Co alloy nanocatalysts. Nano Lett. 15, 7473–7480 (2015).

    Article  PubMed  CAS  Google Scholar 

  50. Zhao, Z. et al. Composition tunable ternary Pt–Ni–Co octahedra for optimized oxygen reduction activity. Chem. Commun. 52, 11215–11218 (2016).

  51. Huang, X. et al. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Huang, J. et al. PtCuNi tetrahedra catalysts with tailored surfaces for efficient alcohol oxidation. Nano Lett. 19, 5431–5436 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Arruda, T. M., Shyam, B., Ziegelbauer, J. M., Mukerjee, S. & Ramaker, D. E. Investigation into the competitive and site-specific nature of anion adsorption on Pt using in situ X-ray absorption spectroscopy. J. Phys. Chem. C 112, 18087–18097 (2008).

    Article  CAS  Google Scholar 

  54. Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Newville, M., Līviņš, P., Yacoby, Y., Rehr, J. J. & Stern, E. A. Near-edge X-ray-absorption fine structure of Pb: a comparison of theory and experiment. Phys. Rev. B 47, 14126–14131 (1993).

    Article  CAS  Google Scholar 

  57. Ankudinov, A. L., Ravel, B., Rehr, J. J. & Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998).

    Article  CAS  Google Scholar 

  58. Mattheiss, L. F. Energy bands for solid argon. Phys. Rev. 133, A1399–A1403 (1964).

    Article  Google Scholar 

  59. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Condens. Matter Phys. 21, 395502 (2009).

    Article  Google Scholar 

  60. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  62. Wang, Z., Guo, X., Montoya, J. & Nørskov, J. K. Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional. npj Comput. Mater. 6, 160 (2020).

    Article  Google Scholar 

  63. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Gong, M. et al. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: integrating multiple advantages into one catalyst. ACS Catal. 9, 4488–4494 (2019).

    Article  CAS  Google Scholar 

  65. Beermann, V. et al. Rh-doped Pt–Ni octahedral nanoparticles: understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability. Nano Lett. 16, 1719–1725 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Lim, J. et al. Ga–doped Pt–Ni octahedral nanoparticles as a highly active and durable electrocatalyst for oxygen reduction reaction. Nano Lett. 18, 2450–2458 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Bu, L. et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 7, 11850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.H., Q.J., W.A.G. and X.D. gratefully acknowledge the support of the Office of Naval Research (award N000141812155). The XAS data were collected at beamlines 6-BM, 7-BM and 8-ID of the National Synchrotron Light Source II, a US Department of Energy Office of Science User Facility operated for the Department of Energy Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. We acknowledge the use of facilities and instrumentation at the University of California Irvine Materials Research Institute, supported in part by the National Science Foundation Materials Research Science and Engineering Center programme through the University of California Irvine Center for Complex and Active Materials (DMR-2011967). We also thank the Electron Imaging Center of Nanomachines at the California NanoSystems Institute (CNSI) for TEM support. A.F. and W.A.G. received support from the National Science Foundation (CBET-1805022 and CBET-2005250). A.F., G.B. and L.S. gratefully acknowledge the contribution of the International Research Network on Nanoalloys Centre national de la recherche scientifique (CNRS) and computational support from the CINECA supercomputing centre within the Italian SuperComputing Resource Allocation (ISCRA) programme.

Author information

Authors and Affiliations

Authors

Contributions

J.H., M.F., M.L., Y.L., C.W., S.-J.L., B.P. and Z.L. conducted the synthesis of electrocatalysts, structural characterization and electrochemical experiments. M.X. and J.H. conducted the TEM and EDX characterizations. Q.J., E.L., L.J. and D.L. conducted the XAS studies. A.F., L.S., G.B., Q.J., J.H. and W.A.G. performed the modelling and data analyses. The project was conceived by Y.H. and supervised by Y.H. (project design, syntheses and evaluation of the catalysts); Q.J. (XAS studies); and A.F. and W.A.G. (computational studies). J.H., Y.H., Q.J. and A.F. wrote the original draught. J.H., Y.H., Q.J., A.F., W.A.G. and Z.L. revised the manuscript.

Corresponding authors

Correspondence to William A. Goddard III, Alessandro Fortunelli, Qingying Jia or Yu Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Janis Timoshenko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–34, Tables 1–6 and refs. 1–12.

Supplementary Data

Coordination of DFT models.

Source data

Source Data Fig. 2

Source data of the XANES simulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Sementa, L., Liu, Z. et al. Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nat Catal 5, 513–523 (2022). https://doi.org/10.1038/s41929-022-00797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00797-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing