Fig. 5 | Communications Physics

Fig. 5

From: Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy

Fig. 5

Differential conductance across an exceptional point (EP). \(dI/dV\) as a function of bias \(V\) and Zeeman field \(B/{B}_{{\rm{c}}}\) for the three systems discussed in this paper: long wire with a quantum dot state (ac), nanowire with a smoothly confined Andreev bound states (df) and a nanowire with uniform density and pairing (gi). a, d and g shows the \({{d}}I/{d}V\) at \(V=0\) at low temperatures (\(T=20\) mK and \(T=50\) mK, blue and red dashed lines, respectively). These jump towards a quantised \(2{e}^{2}/h\) value just as the Majorana asymmetry (thick grey line) becomes finite \(\gamma /\Gamma \sim 1\) upon crossing an EP (non-trivial topology). c, f and i shows the ZBAs at fixed \(B/{B}_{{\rm{c}}}\) (see white dashed cuts in the density plots). Only the latter two (non-trivial \(\gamma /\Gamma \ > \ 0\)) reach \(2{e}^{2}/h\) at \(T\to 0\)

Back to article page