Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-energy neutrino transients and the future of multi-messenger astronomy

Abstract

The discovery of high-energy astrophysical neutrinos and the first hints of coincident electromagnetic and neutrino emissions opened new opportunities in multi-messenger astronomy. Owing to their high power, transient sources are expected to supply a significant fraction of the observed energetic astroparticles, through enhanced particle acceleration and interactions. Here, we review theoretical expectations of neutrino emission from transient astrophysical sources and the current and upcoming experimental landscape, highlighting the most promising channels for discovery and specifying their detectability.

Key points

  • The production of high-energy to ultra-high-energy neutrinos is governed by the interaction of accelerated cosmic rays with photon and baryon backgrounds, and high-power astrophysical transients are promising source candidates for these energetic astroparticles.

  • The properties of these neutrinos, in particular their energy and flux, depend on numerous physical processes operating at different timescales and length scales, and, therefore, their description requires careful modelling combining various phenomenological or numerical methods.

  • Transient sources have widely different observational characteristics and, to assess their detectability in neutrinos, the time-dependent modelling of multi-wavelength signals, multi-messenger signals and their uncertainties is essential.

  • Further constraints on source modelling and the actual identification of neutrino transients will be achieved by adequate and powerful neutrino detectors, combined with electromagnetic follow-up telescopes and gravitational wave detectors via efficient networks.

  • The observational prospects are promising, with several high-energy-neutrino observatories already in construction, a first generation of ultra-high-energy-neutrino observatories planned to be fully deployed around 2025–2030 and, on the electromagnetic side, several wide-field-of-view instruments planned for 2025 and beyond, with great potential for discoveries and excellent neutrino follow-up capabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maximum neutrino energy (in eV) that could be produced by various categories of transient sources, with variability timescale tvar and bolometric luminosity Lbol.
Fig. 2: All-flavour neutrino fluence from theoretically predicted short and long astrophysical transients and comparison with the sensitivity of existing and upcoming neutrino detectors.
Fig. 3: Comparison of the local density and implied neutrino energy output of transient extragalactic neutrino sources to the sensitivity of upcoming ultra-high-energy neutrino detectors.

Similar content being viewed by others

References

  1. Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817a. Astrophys. J. 848, L13 (2017).

    Article  ADS  Google Scholar 

  2. Alves Batista, R. et al. Open questions in cosmic-ray research at ultrahigh energies. Front. Astron. Space Sci. 6, 23 (2019).

    Article  ADS  Google Scholar 

  3. The Pierre Auger Collaboration et al. Constraints on the origin of cosmic rays above 1018 eV from large-scale anisotropy searches in data of the Pierre Auger Observatory. Astrophys. J. Lett. 762, L13 (2013).

    Article  ADS  Google Scholar 

  4. Anchordoqui, L. A. Ultra-high-energy cosmic rays. Phys. Rep. 801, 1–93 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  5. Fang, K. & Kotera, K. The highest-energy cosmic rays cannot be dominantly protons from steady sources. Astrophys. J. Lett. 832, L17 (2016).

    Article  ADS  Google Scholar 

  6. Palladino, A., van Vliet, A., Winter, W. & Franckowiak, A. Can astrophysical neutrinos trace the origin of the detected ultra-high energy cosmic rays? Mon. Not. R. Astron. Soc. 494, 4255–4265 (2020).

    Article  ADS  Google Scholar 

  7. Aartsen, M. G. et al. Searches for time-dependent neutrino sources with IceCube data from 2008 to 2012. Astrophys. J. 807, 46 (2015).

    Article  ADS  Google Scholar 

  8. The ANTARES Collaboration. Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope. J. Cosmol. Astropart. Phys. 2015, 014 (2015).

    Article  Google Scholar 

  9. Murase, K. & Waxman, E. Constraining high-energy cosmic neutrino sources: implications and prospects. Phys. Rev. D 94, 103006 (2016).

    Article  ADS  Google Scholar 

  10. Berezinsky, V. S. & Zatsepin, G. T. Cosmic rays at ultra high energies (neutrino?). Phys. Lett. B 28, 423–424 (1969).

    Article  ADS  Google Scholar 

  11. Aartsen, M. G. et al. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013).

    Article  ADS  Google Scholar 

  12. Aartsen, M. G. et al. Time-integrated neutrino source searches with 10 years of IceCube data. Phys. Rev. Lett. 124, 051103 (2020).

    Article  ADS  Google Scholar 

  13. Aartsen, M. G. et al. The IceCube realtime alert system. Astropart. Phys. 92, 30–41 (2017).

    Article  ADS  Google Scholar 

  14. IceCube Collaboration et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).

    Article  ADS  Google Scholar 

  15. Smartt, S. et al. ICECUBE-160427A: Pan-STARRS Imaging and Optical Transients in the Field. GRB Coordinates Network, Circular Service No. 19381 (NASA, 2016).

  16. Kadler, M. et al. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nat. Phys. 12, 807–814 (2016).

    Article  Google Scholar 

  17. Stein, R. et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. 5, 510–518 (2021).

    Article  ADS  Google Scholar 

  18. Murase, K. & Bartos, I. High-energy multimessenger transient astrophysics. Annu. Rev. Nucl. Part. Sci. 69, 477–506 (2019).

    Article  ADS  Google Scholar 

  19. Xue, R. et al. A two-zone model for blazar emission: implications for TXS 0506+056 and the neutrino event IceCube-170922A. Astrophys. J. 886, 23 (2019).

    Article  ADS  Google Scholar 

  20. Marcowith, A. et al. The microphysics of collisionless shock waves. Rep. Prog. Phys. 79, 046901 (2016).

    Article  ADS  Google Scholar 

  21. Yamada, M., Kulsrud, R. & Ji, H. Magnetic reconnection. Rev. Mod. Phys. 82, 603–664 (2010).

    Article  ADS  MATH  Google Scholar 

  22. Zhang, H., Sironi, L. & Giannios, D. Fast particle acceleration in three-dimensional relativistic reconnection. Astrophys. J. 922, 261 (2021).

    Article  ADS  Google Scholar 

  23. Lemoine, M. Generalized Fermi acceleration. Phys. Rev. D 99, 083006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  24. Lemoine, M. & Waxman, E. Anisotropy vs chemical composition at ultra-high energies. J. Cosmol. Astropart. Phys. 11, 009 (2009).

    Article  ADS  Google Scholar 

  25. Rachen, J. P. & Meszaros, P. Photohadronic neutrinos from transients in astrophysical sources. Phys. Rev. D 58, 123005 (1998).

    Article  ADS  Google Scholar 

  26. Protheroe, R. J. Factors determining variability time in active galactic nucleus jets. Publ. Astron. Soc. Aust. 19, 486–498 (2002).

    Article  ADS  Google Scholar 

  27. Rachen, J. P. Interaction Processes and Statistical Properties of the Propagation of Cosmic Rays in Photon Backgrounds. PhD thesis, Bonn Univ. (1996).

  28. Dermer, C. D. & Menon, G. High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos (Princeton Univ. Press, 2009).

  29. Guépin, C. & Kotera, K. Can we observe neutrino flares in coincidence with explosive transients? Astron. Astrophys. 603, A76 (2017).

    Article  ADS  Google Scholar 

  30. Murase, K., Asano, K., Terasawa, T. & Mészáros, P. The role of stochastic acceleration in the prompt emission of gamma-ray bursts: application to hadronic injection. Astrophys. J. 746, 164 (2012).

    Article  ADS  Google Scholar 

  31. Reynoso, M. M. A two-zone approach to neutrino production in gamma-ray bursts. Astron. Astrophys. 564, A74 (2014).

    Article  ADS  Google Scholar 

  32. Winter, W., Becker Tjus, J. & Klein, S. R. Impact of secondary acceleration on the neutrino spectra in gamma-ray bursts. Astron. Astrophys. 569, A58 (2014).

    Article  ADS  Google Scholar 

  33. Kawanaka, N. & Ioka, K. Neutrino flavor ratios modified by cosmic-ray secondary acceleration. Phys. Rev. D 92, 085047 (2015).

    Article  ADS  Google Scholar 

  34. Guépin, C. Signatures of secondary acceleration in neutrino flares. Astron. Astrophys. 641, A29 (2020).

    Article  ADS  Google Scholar 

  35. Hillas, A. M. The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425–444 (1984).

    Article  ADS  Google Scholar 

  36. Blaufuss, E. ICECUBE-160427A Neutrino Candidate Event: Updated Direction Information. GRB Coordinates Network, Circular Service No. 19363 (NASA, 2016).

  37. Waxman, E. & Bahcall, J. High energy neutrinos from astrophysical sources: an upper bound. Phys. Rev. D 59, 023002 (1998).

    Article  ADS  Google Scholar 

  38. Fiorillo, D. F. G., Van Vliet, A., Morisi, S. & Winter, W. Unified thermal model for photohadronic neutrino production in astrophysical sources. J. Cosmol. Astropart. Phys. 07, 028 (2021).

    Article  ADS  Google Scholar 

  39. Dawson, J. M. Particle simulation of plasmas. Rev. Mod. Phys. 55, 403–447 (1983).

    Article  ADS  Google Scholar 

  40. Roh, S., Inutsuka, S.-i & Inoue, T. Diffusion of cosmic rays in a multiphase interstellar medium swept-up by a supernova remnant blast wave. Astropart. Phys. 73, 1–7 (2016).

    Article  ADS  Google Scholar 

  41. Kimura, S. S., Toma, K., Suzuki, T. K. & Inutsuka, S.-i. Stochastic particle acceleration in turbulence generated by magnetorotational instability. Astrophys. J. 822, 88 (2016).

    Article  ADS  Google Scholar 

  42. Kimura, S. S., Tomida, K. & Murase, K. Acceleration and escape processes of high-energy particles in turbulence inside hot accretion flows. Mon. Not. R. Astron. Soc. 485, 163–178 (2019).

    Article  ADS  Google Scholar 

  43. Sun, X. & Bai, X.-N. Particle diffusion and acceleration in magnetorotational instability turbulence. Mon. Not. R. Astron. Soc. 506, 1128–1147 (2021).

    Article  ADS  Google Scholar 

  44. Guépin, C., Cerutti, B. & Kotera, K. Proton acceleration in pulsar magnetospheres. Astron. Astrophys. 635, A138 (2020).

    Article  ADS  Google Scholar 

  45. Crinquand, B., Cerutti, B., Philippov, A., Parfrey, K. & Dubus, G. Multidimensional simulations of ergospheric pair discharges around black holes. Phys. Rev. Lett. 124, 145101 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  46. Del Gaudio, F., Grismayer, T., Fonseca, R. A. & Silva, L. O. Compton scattering in particle-in-cell codes. J. Plasma Phys. 86, 905860516 (2020).

    Article  Google Scholar 

  47. Hakobyan, H. & Spitkovsky, A. Tristan-mp v2, multi-species particle-in-cell plasma code. https://ntoles.github.io/tristan-wiki/ (2020).

  48. Strong, A. W. & Moskalenko, I. V. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509, 212–228 (1998).

    Article  ADS  Google Scholar 

  49. Evoli, C., Gaggero, D., Grasso, D. & Maccione, L. Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model. J. Cosmol. Astropart. Phys. 10, 018 (2008); erratum 04, E01 (2016).

    Article  ADS  Google Scholar 

  50. Kissmann, R. PICARD: a novel code for the Galactic Cosmic Ray propagation problem. Astropart. Phys. 55, 37–50 (2014).

    Article  ADS  Google Scholar 

  51. Alves Batista, R. et al. CRPropa 3 — a public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles. J. Cosmol. Astropart. Phys. 2016, 038 (2016).

    Article  Google Scholar 

  52. Aloisio, R. et al. SimProp v2r4: Monte Carlo simulation code for UHECR propagation. J. Cosmol. Astropart. Phys. 2017, 009 (2017).

    Article  Google Scholar 

  53. Merten, L., Becker Tjus, J., Fichtner, H., Eichmann, B. & Sigl, G. CRPropa 3.1 — a low energy extension based on stochastic differential equations. J. Cosmol. Astropart. Phys. 06, 046 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Armengaud, E., Sigl, G., Beau, T. & Miniati, F. CRPropa: a numerical tool for the propagation of UHE cosmic rays, γ-rays and neutrinos. Astropart. Phys. 28, 463–471 (2007).

    Article  ADS  Google Scholar 

  55. Kotera, K. et al. Propagation of ultrahigh energy nuclei in clusters of galaxies: resulting composition and secondary emissions. Astrophys. J. 707, 370–386 (2009).

    Article  ADS  Google Scholar 

  56. Globus, N., Allard, D., Mochkovitch, R. & Parizot, E. UHECR acceleration at GRB internal shocks. Mon. Not. R. Astron. Soc. 451, 751–790 (2015).

    Article  ADS  Google Scholar 

  57. Boncioli, D., Fedynitch, A. & Winter, W. Nuclear physics meets the sources of the ultra-high energy cosmic rays. Sci. Rep. 7, 4882 (2017).

    Article  ADS  Google Scholar 

  58. Mücke, A., Engel, R., Rachen, J. P., Protheroe, R. J. & Stanev, T. Monte Carlo simulations of photohadronic processes in astrophysics. Comput. Phys. Commun. 124, 290–314 (2000).

    Article  ADS  MATH  Google Scholar 

  59. Koning, A. J., Hilaire, S. & Duijvestijn, M. C. TALYS: comprehensive nuclear reaction modeling. AIP Conf. Proc. 769, 1154–1159 (2005).

    Article  ADS  Google Scholar 

  60. Werner, K., Liu, F.-M. & Pierog, T. Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 74, 044902 (2006).

    Article  ADS  Google Scholar 

  61. Riehn, F., Engel, R., Fedynitch, A., Gaisser, T. K. & Stanev, T. Hadronic interaction model SIBYLL 2.3d and extensive air showers. Phys. Rev. D 102, 063002 (2020).

    Article  ADS  Google Scholar 

  62. Morejon, L., Fedynitch, A., Boncioli, D., Biehl, D. & Winter, W. Improved photomeson model for interactions of cosmic ray nuclei. J. Cosmol. Astropart. Phys. 11, 007 (2019).

    Article  ADS  Google Scholar 

  63. Alves Batista, R., Boncioli, D., di Matteo, A., van Vliet, A. & Walz, D. Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp. J. Cosmol. Astropart. Phys. 2015, 063 (2015).

    Article  Google Scholar 

  64. Alves Batista, R., Boncioli, D., di Matteo, A. & van Vliet, A. Secondary neutrino and gamma-ray fluxes from SimProp and CRPropa. J. Cosmol. Astropart. Phys. 2019, 006 (2019).

    Article  Google Scholar 

  65. Fang, K. & Metzger, B. D. High-energy neutrinos from millisecond magnetars formed from the merger of binary neutron stars. Astrophys. J. 849, 153 (2017).

    Article  ADS  Google Scholar 

  66. Guépin, C., Kotera, K., Barausse, E., Fang, K. & Murase, K. Ultra-high energy cosmic rays and neutrinos from tidal disruptions by massive black holes. Astron. Astrophys. 616, A179 (2018); erratum 636, C3 (2020).

    Article  ADS  Google Scholar 

  67. Decoene, V., Guépin, C., Fang, K., Kotera, K. & Metzger, B. D. High-energy neutrinos from fallback accretion of binary neutron star merger remnants. J. Cosmol. Astropart. Phys. 04, 045 (2020).

    Article  ADS  Google Scholar 

  68. Alves Batista, R. et al. in Proc. 37th International Cosmic Ray Conference (2021).

  69. Biehl, D., Boncioli, D., Fedynitch, A. & Winter, W. Cosmic ray and neutrino emission from gamma-ray bursts with a nuclear cascade. Astron. Astrophys. 611, A101 (2018).

    Article  ADS  Google Scholar 

  70. Heinze, J. et al. Systematic parameter space study for the UHECR origin from GRBs in models with multiple internal shocks. Mon. Not. R. Astron. Soc. 498, 5990–6004 (2020).

    Article  ADS  Google Scholar 

  71. Gao, S., Pohl, M. & Winter, W. On the direct correlation between gamma-rays and PeV neutrinos from blazars. Astrophys. J. 843, 109 (2017).

    Article  ADS  Google Scholar 

  72. Mastichiadis, A. & Kirk, J. G. Self-consistent particle acceleration in active galactic nuclei. Astron. Astrophys. 295, 613 (1995).

    ADS  Google Scholar 

  73. Boettcher, M., Reimer, A., Sweeney, K. & Prakash, A. Leptonic and hadronic modeling of Fermi-detected blazars. Astrophys. J. 768, 54 (2013).

    Article  ADS  Google Scholar 

  74. Cerruti, M., Zech, A., Boisson, C. & Inoue, S. A hadronic origin for ultra-high-frequency-peaked BL Lac objects. Mon. Not. R. Astron. Soc. 448, 910–927 (2015).

    Article  ADS  Google Scholar 

  75. Cerruti, M. et al. in Proc. 37th International Cosmic Ray Conference 979 (IUPAP, 2021).

  76. Nigro, C. et al. agnpy: An open-source python package modelling the radiative processes of jetted active galactic nuclei. Astron. Astrophys. 660, A18 (2022).

    Article  Google Scholar 

  77. Zabalza, V. in Proc. 34th International Cosmic Ray Conference 922 (IUPAP, 2016).

  78. Tramacere, A. JetSeT: numerical modeling and SED fitting tool for relativistic jets. Astrophysics Source Code Library, record ascl:2009.001 (2020).

  79. Aab, A. et al. Depth of maximum of air-shower profiles at the Pierre Auger Observatory: measurements at energies above 1017.8 eV. Phys. Rev. D 90, 122005 (2014).

    Article  ADS  Google Scholar 

  80. Hummer, S., Ruger, M., Spanier, F. & Winter, W. Simplified models for photohadronic interactions in cosmic accelerators. Astrophys. J. 721, 630–652 (2010).

    Article  ADS  Google Scholar 

  81. Boncioli, D., Fedynitch, A. & Winter, W. Nuclear physics meets the sources of the ultra-high energy cosmic rays. Sci. Rep. 7, 4882 (2017).

    Article  ADS  Google Scholar 

  82. Biehl, D., Boncioli, D., Fedynitch, A. & Winter, W. Cosmic-ray and neutrino emission from gamma-ray bursts with a nuclear cascade. Astron. Astrophys. 611, A101 (2018).

    Article  ADS  Google Scholar 

  83. Hoerbe, M. R., Morris, P. J., Cotter, G. & Becker Tjus, J. On the relative importance of hadronic emission processes along the jet axis of active galactic nuclei. Mon. Not. R. Astron. Soc. 496, 2885–2901 (2020).

    Article  ADS  Google Scholar 

  84. Kopper, C. clsim: photon-tracking simulation modeling scattering and absorption of light in the deep glacial ice at the South Pole or Mediterranean sea water. https://github.com/claudiok/clsim.

  85. Meighen-Berger, S. fennel: light from tracks and cascades. https://github.com/MeighenBergerS/fennel.

  86. Argüelles, C. A., Salvado, J. & Weaver, C. N. nuSQuIDS: A toolbox for neutrino propagation. Comput. Phys. Commun. 277, 108346 (2022).

    Article  MathSciNet  Google Scholar 

  87. Krizmanic, J. F. et al. in Proc. 36th International Cosmic Ray Conference 936 (IUPAP, 2019).

  88. Böttcher, M. Progress in multi-wavelength and multi-messenger observations of blazars and theoretical challenges. Galaxies 7, 20 (2019).

    Article  ADS  Google Scholar 

  89. Ansoldi, S. et al. The blazar TXS 0506+056 associated with a high-energy neutrino: insights into extragalactic jets and cosmic ray acceleration. Astrophys. J. Lett. 863, L10 (2018).

    Article  ADS  Google Scholar 

  90. Cerruti, M. et al. Leptohadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056. Mon. Not. R. Astron. Soc. 483, L12–L16 (2019); erratum 502, L21–L22 (2021).

    Article  ADS  Google Scholar 

  91. Gao, S., Fedynitch, A., Winter, W. & Pohl, M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare. Nat. Astron. 3, 88–92 (2019).

    Article  ADS  Google Scholar 

  92. Keivani, A. et al. A multimessenger picture of the flaring blazar TXS 0506+056: implications for high-energy neutrino emission and cosmic ray acceleration. Astrophys. J. 864, 84 (2018).

    Article  ADS  Google Scholar 

  93. Reimer, A., Boettcher, M. & Buson, S. Cascading constraints from neutrino-emitting blazars: the case of TXS 0506+056. Astrophys. J. 881, 46 (2019); erratum 899, 168 (2020).

    Article  ADS  Google Scholar 

  94. Petropoulou, M. et al. Multi-epoch modeling of TXS 0506+056 and implications for long-term high-energy neutrino emission. Astrophys. J. 891, 115 (2020).

    Article  ADS  Google Scholar 

  95. Oikonomou, F., Murase, K. & Petropoulou, M. High-energy neutrinos from blazar flares and implications of TXS 0506+056. EPJ Web Conf. 210, 03006 (2019).

    Article  Google Scholar 

  96. Xue, R., Liu, R.-Y., Wang, Z.-R., Ding, N. & Wang, X.-Y. A two-zone blazar radiation model for “orphan” neutrino flares. Astrophys. J. 906, 51 (2021).

    Article  ADS  Google Scholar 

  97. Paliya, V. S. et al. Multifrequency observations of the candidate neutrino-emitting blazar BZB J0955+3551. Astrophys. J. 902, 29 (2020).

    Article  ADS  Google Scholar 

  98. Petropoulou, M. et al. Comprehensive multimessenger modeling of the extreme blazar 3HSP J095507.9+355101 and predictions for IceCube. Astrophys. J. 899, 113 (2020).

    Article  ADS  Google Scholar 

  99. Rodrigues, X. et al. Multiwavelength and neutrino emission from blazar PKS 1502 + 106. Astrophys. J. 912, 54 (2021).

    Article  ADS  Google Scholar 

  100. Oikonomou, F. et al. Multi-messenger emission from the parsec-scale jet of the flat-spectrum radio quasar PKS 1502+106 coincident with high-energy neutrino IceCube-190730a. J. Cosmol. Astropart. Phys. 10, 082 (2021).

    Article  ADS  Google Scholar 

  101. Oikonomou, F. in Proc. 37th International Cosmic Ray Conference 030 (IUPAP, 2022).

  102. Padovani, P., Boccardi, B., Falomo, R. & Giommi, P. PKS 1424+240: yet another masquerading BL Lac object as a possible IceCube neutrino source. Mon. Not. R. Astron. Soc. 511, 4697–4701 (2022).

    Article  ADS  Google Scholar 

  103. Sahakyan, N. et al. A multi-messenger study of the blazar PKS 0735+178: a new major neutrino source candidate. Preprint at https://arxiv.org/abs/2204.05060 (2022).

  104. Esposito, P., Rea, N. & Israel, G. L. in Timing Neutron Stars: Pulsations, Oscillations and Explosions. Astrophysics and Space Science Library Vol. 461 (eds Belloni, T. M., Méndez, M. & Zhang, C.) 97–142 (Springer, 2020).

  105. Zhang, B., Dai, Z. G. & Meszaros, P. High-energy neutrinos from magnetars. Astrophys. J. 595, 346–351 (2003).

    Article  ADS  Google Scholar 

  106. Ioka, K., Razzaque, S., Kobayashi, S. & Meszaros, P. TeV-PeV neutrinos from giant flares of magnetars and the case of SGR 1806–20. Astrophys. J. 633, 1013–1017 (2005).

    Article  ADS  Google Scholar 

  107. Levinson, A. & Waxman, E. Probing microquasars with TeV neutrinos. Phys. Rev. Lett. 87, 171101 (2001).

    Article  ADS  Google Scholar 

  108. Anchordoqui, L. A., Torres, D. F., McCauley, T. P., Romero, G. E. & Aharonian, F. A. Neutrinos from accreting neutron stars. Astrophys. J. 589, 481–486 (2003).

    Article  ADS  Google Scholar 

  109. Distefano, C., Guetta, D., Waxman, E. & Levinson, A. Neutrino flux predictions for known galactic microquasars. Astrophys. J. 575, 378–383 (2002).

    Article  ADS  Google Scholar 

  110. Baerwald, P. & Guetta, D. Estimation of the neutrino flux and resulting constraints on hadronic emission models for Cyg X-3 using AGILE data. Astrophys. J. 773, 159 (2013).

    Article  ADS  Google Scholar 

  111. Sahakyan, N., Piano, G. & Tavani, M. Hadronic gamma-ray and neutrino emission from Cygnus X-3. Astrophys. J. 780, 29 (2014).

    Article  ADS  Google Scholar 

  112. Kasliwal, M. M. Bridging the Gap: Elusive Explosions in the Local Universe. PhD thesis, California Inst. Technol. (2011).

  113. Quimby, R. M. et al. Hydrogen-poor superluminous stellar explosions. Nature 474, 487–489 (2011).

    Article  ADS  Google Scholar 

  114. Beall, J. H. & Bednarek, W. Neutrinos from early-phase, pulsar-driven supernovae. Astrophys. J. 569, 343–348 (2002).

    Article  ADS  Google Scholar 

  115. Arons, J. Magnetars in the metagalaxy: an origin for ultra-high-energy cosmic rays in the nearby universe. Astrophys. J. 589, 871–892 (2003).

    Article  ADS  Google Scholar 

  116. Fang, K., Kotera, K. & Olinto, A. V. Newly born pulsars as sources of ultrahigh energy cosmic rays. Astrophys. J. 750, 118 (2012).

    Article  ADS  Google Scholar 

  117. Kotera, K., Amato, E. & Blasi, P. The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars. J. Cosmol. Astropart. Phys. 8, 026 (2015).

    Article  ADS  Google Scholar 

  118. Murase, K., Meszaros, P. & Zhang, B. Probing the birth of fast rotating magnetars through high-energy neutrinos. Phys. Rev. D 79, 103001 (2009).

    Article  ADS  Google Scholar 

  119. Fang, K., Kotera, K., Murase, K. & Olinto, A. V. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources. J. Cosmol. Astropart. Phys. 4, 010 (2016).

    Article  ADS  Google Scholar 

  120. Murase, K. New prospects for detecting high-energy neutrinos from nearby supernovae. Phys. Rev. D 97, 081301 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  121. Fang, K., Metzger, B. D., Vurm, I., Aydi, E. & Chomiuk, L. High-energy neutrinos and gamma rays from nonrelativistic shock-powered transients. Astrophys. J. 904, 4 (2020).

    Article  ADS  Google Scholar 

  122. Liang, E., Zhang, B. & Dai, Z. G. Low luminosity gamma-ray bursts as a unique population: luminosity function, local rate, and beaming factor. Astrophys. J. 662, 1111–1118 (2007).

    Article  ADS  Google Scholar 

  123. Virgili, F. J., Liang, E.-W. & Zhang, B. Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints. Mon. Not. R. Astron. Soc. 392, 91–103 (2009).

    Article  ADS  Google Scholar 

  124. Bromberg, O., Nakar, E. & Piran, T. Are low-luminosity gamma-ray bursts generated by relativistic jets? Astrophys. J. Lett. 739, L55 (2011).

    Article  ADS  Google Scholar 

  125. Nakar, E. A unified picture for low-luminosity and long gamma-ray bursts based on the extended progenitor of llGRB 060218/SN 2006aj. Astrophys. J. 807, 172 (2015).

    Article  ADS  Google Scholar 

  126. Salafia, O. S., Ghisellini, G., Pescalli, A., Ghirlanda, G. & Nappo, F. Light curves and spectra from off-axis gamma-ray bursts. Mon. Not. R. Astron. Soc. 461, 3607–3619 (2016).

    Article  ADS  Google Scholar 

  127. Kashiyama, K., Murase, K., Horiuchi, S., Gao, S. & Mészáros, P. High-energy neutrino and gamma-ray transients from trans-relativistic supernova shock breakouts. Astrophys. J. Lett. 769, L6 (2013).

    Article  ADS  Google Scholar 

  128. Senno, N., Murase, K. & Meszaros, P. Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Phys. Rev. D 93, 083003 (2016).

    Article  ADS  Google Scholar 

  129. Boncioli, D., Biehl, D. & Winter, W. On the common origin of cosmic rays across the ankle and diffuse neutrinos at the highest energies from low-luminosity Gamma-Ray Bursts. Astrophys. J. 872, 110 (2019).

    Article  ADS  Google Scholar 

  130. Fasano, M. et al. Estimating the neutrino flux from choked gamma-ray bursts. J. Cosmol. Astropart. Phys. 09, 044 (2021).

    Article  ADS  Google Scholar 

  131. Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273 (1993).

    Article  ADS  Google Scholar 

  132. Hjorth, J. & Bloom, J. S. in Gamma-Ray Bursts, Cambridge Astrophysics Series 51 (eds Kouveliotou, C., Wijers, R. A. M. J. & Woosley, S.) 169–190 (Cambridge Univ. Press, 2012).

  133. Waxman, E. & Bahcall, J. N. High-energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78, 2292–2295 (1997).

    Article  ADS  Google Scholar 

  134. Dermer, C. D. Neutrino, neutron, and cosmic ray production in the external shock model of gamma-ray bursts. Astrophys. J. 574, 65–87 (2002).

    Article  ADS  Google Scholar 

  135. Murase, K. & Nagataki, S. High energy neutrino flash from far-UV/X-ray flares of gamma-ray bursts. Phys. Rev. Lett. 97, 051101 (2006).

    Article  ADS  Google Scholar 

  136. Murase, K. High energy neutrino early afterglows gamma-ray bursts revisited. Phys. Rev. D 76, 123001 (2007).

    Article  ADS  Google Scholar 

  137. Murase, K., Ioka, K., Nagataki, S. & Nakamura, T. High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray bursts and implications for multi-messenger astronomy. Phys. Rev. D 78, 023005 (2008).

    Article  ADS  Google Scholar 

  138. Murase, K., Kashiyama, K. & Mészáros, P. Subphotospheric neutrinos from gamma-ray bursts: the role of neutrons. Phys. Rev. Lett. 111, 131102 (2013).

    Article  ADS  Google Scholar 

  139. Mészáros, P. in Neutrino Astronomy. Current Status, Future Prospects (eds Gaisser, T. & Karle, A.) 1–14 (2015).

  140. Pitik, T., Tamborra, I. & Petropoulou, M. Neutrino signal dependence on gamma-ray burst emission mechanism. J. Cosmol. Astropart. Phys. 05, 034 (2021).

    Article  ADS  Google Scholar 

  141. Xiao, D., Mészáros, P., Murase, K. & Dai, Z.-g. High-energy neutrino emission from white dwarf mergers. Astrophys. J. 832, 20 (2016).

    Article  ADS  Google Scholar 

  142. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article  ADS  Google Scholar 

  143. Piro, A. L. & Kollmeier, J. A. Ultrahigh-energy cosmic rays from the “en Caul” birth of magnetars. Astrophys. J. 826, 97 (2016).

    Article  ADS  Google Scholar 

  144. Kimura, S. S. et al. Transejecta high-energy neutrino emission from binary neutron star mergers. Phys. Rev. D 98, 043020 (2018).

    Article  ADS  Google Scholar 

  145. Gottlieb, O. & Globus, N. The role of jet–cocoon mixing, magnetization, and shock breakout in neutrino and cosmic-ray emission from short gamma-ray bursts. Astrophys. J. Lett. 915, L4 (2021).

    Article  ADS  Google Scholar 

  146. Murase, K., Kashiyama, K., Mészáros, P., Shoemaker, I. & Senno, N. Ultrafast outflows from black hole mergers with a minidisk. Astrophys. J. Lett. 822, L9 (2016).

    Article  ADS  Google Scholar 

  147. Kotera, K. & Silk, J. Ultrahigh energy cosmic rays and black hole mergers. Astrophys. J. Lett. 823, L29 (2016).

    Article  ADS  Google Scholar 

  148. de Vries, K. D., de Wasseige, G., Frère, J.-M. & Vereecken, M. Constraints and prospects on gravitational-wave and neutrino emissions using GW150914. Phys. Rev. D 96, 083003 (2017).

    Article  ADS  Google Scholar 

  149. Frank, J. & Rees, M. J. Effects of massive black holes on dense stellar systems. Mon. Not. R. Astron. Soc. 176, 633–647 (1976).

    Article  ADS  Google Scholar 

  150. Komossa, S. Tidal disruption of stars by supermassive black holes: status of observations. J. High Energy Astrophys. 7, 148–157 (2015).

    Article  ADS  Google Scholar 

  151. Bloom, J. S. et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203–206 (2011).

    Article  ADS  Google Scholar 

  152. Burrows, D. N. et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011).

    Article  ADS  Google Scholar 

  153. Murase, K. Astrophysical high-energy neutrinos and gamma-ray bursts. AIP Conf. Proc. 1065, 201–206 (2008).

    Article  ADS  Google Scholar 

  154. Murase, K. & Takami, H. in Proc. 31st International Cosmic Ray Conference 1181 (IUPAP, 2009).

  155. Wang, X.-Y., Liu, R.-Y., Dai, Z.-G. & Cheng, K. S. Probing the tidal disruption flares of massive black holes with high-energy neutrinos. Phys. Rev. D 84, 081301 (2011).

    Article  ADS  Google Scholar 

  156. Wang, X.-Y. & Liu, R.-Y. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos. Phys. Rev. D 93, 083005 (2016).

    Article  ADS  Google Scholar 

  157. Senno, N., Murase, K. & Meszaros, P. High-energy neutrino flares from X-ray bright and dark tidal disruption events. Astrophys. J. 838, 3 (2017).

    Article  ADS  Google Scholar 

  158. Dai, L. & Fang, K. Can tidal disruption events produce the IceCube neutrinos? Mon. Not. R. Astron. Soc. 469, 1354–1359 (2017).

    Article  ADS  Google Scholar 

  159. Lunardini, C. & Winter, W. High energy neutrinos from the tidal disruption of stars. Phys. Rev. D 95, 123001 (2017).

    Article  ADS  Google Scholar 

  160. Biehl, D., Boncioli, D., Lunardini, C. & Winter, W. Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies. Sci. Rep. 8, 10828 (2018).

    Article  ADS  Google Scholar 

  161. Winter, W. & Lunardini, C. A concordance scenario for the observed neutrino from a tidal disruption event. Nat. Astron. 5, 472–477 (2021).

    Article  ADS  Google Scholar 

  162. Hayasaki, K. & Yamazaki, R. Neutrino emissions from tidal disruption remnants. Astrophys. J. 886, 114 (2019).

    Article  ADS  Google Scholar 

  163. Murase, K., Kimura, S. S., Zhang, B. T., Oikonomou, F. & Petropoulou, M. High-energy neutrino and gamma-ray emission from tidal disruption events. Astrophys. J. 902, 108 (2020).

    Article  ADS  Google Scholar 

  164. Liu, R.-Y., Xi, S.-Q. & Wang, X.-Y. Neutrino emission from an off-axis jet driven by the tidal disruption event AT2019dsg. Phys. Rev. D 102, 083028 (2020).

    Article  ADS  Google Scholar 

  165. Perets, H. B. et al. Micro-tidal disruption events by stellar compact objects and the production of ultra-long GRBs. Astrophys. J. 823, 113 (2016).

    Article  ADS  Google Scholar 

  166. Yuan, C., Murase, K., Kimura, S. S. & Mészáros, P. High-energy neutrino emission subsequent to gravitational wave radiation from supermassive black hole mergers. Phys. Rev. D 102, 083013 (2020).

    Article  ADS  Google Scholar 

  167. Zhu, J.-P. et al. High-energy neutrinos from choked gamma-ray bursts in active galactic nucleus accretion disks. Astrophys. J. Lett. 911, L19 (2021).

    Article  ADS  Google Scholar 

  168. Kimura, S. S., Murase, K., Mészáros, P. & Kiuchi, K. High-energy neutrino emission from short gamma-ray bursts: prospects for coincident detection with gravitational waves. Astrophys. J. Lett. 848, L4 (2017).

    Article  ADS  Google Scholar 

  169. van Velzen, S. et al. Optical discovery of probable stellar tidal disruption flares. Astrophys. J. 741, 73 (2011).

    Article  ADS  Google Scholar 

  170. Abbott, R. et al. Population properties of compact objects from the second LIGO–VIRGO gravitational-wave transient catalog. Astrophys. J. Lett. 913, L7 (2021).

    Article  ADS  Google Scholar 

  171. Fang, K., Kotera, K., Murase, K. & Olinto, A. V. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources. J. Cosmol. Astropart. Phys. 04, 010 (2016).

    Article  ADS  Google Scholar 

  172. Meszaros, P. & Waxman, E. TeV neutrinos from successful and choked gamma-ray bursts. Phys. Rev. Lett. 87, 171102 (2001).

    Article  ADS  Google Scholar 

  173. Horiuchi, S. & Ando, S. High-energy neutrinos from reverse shocks in choked and successful relativistic jets. Phys. Rev. D 77, 063007 (2008).

    Article  ADS  Google Scholar 

  174. Oikonomou, F., Murase, K., Padovani, P., Resconi, E. & Mészáros, P. High energy neutrino flux from individual blazar flares. Mon. Not. R. Astron. Soc. 489, 4347–4366 (2019).

    Article  ADS  Google Scholar 

  175. Rodrigues, X., Gao, S., Fedynitch, A., Palladino, A. & Winter, W. Leptohadronic blazar models applied to the 2014–2015 flare of TXS 0506+056. Astrophys. J. Lett. 874, L29 (2019).

    Article  ADS  Google Scholar 

  176. Murase, K., Guetta, D. & Ahlers, M. Hidden cosmic-ray accelerators as an origin of TeV-PeV cosmic neutrinos. Phys. Rev. Lett. 116, 071101 (2016).

    Article  ADS  Google Scholar 

  177. Halzen, F., Kheirandish, A., Weisgarber, T. & Wakely, S. P. On the neutrino flares from the direction of TXS 0506+056. Astrophys. J. Lett. 874, L9 (2019).

    Article  ADS  Google Scholar 

  178. Alves Batista, R. & Saveliev, A. Multimessenger constraints on intergalactic magnetic fields from the flare of TXS 0506+056. Astrophys. J. Lett. 902, L11 (2020).

    Article  ADS  Google Scholar 

  179. Aartsen, M. G. et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).

    Article  ADS  Google Scholar 

  180. Aartsen, M. G. et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 361, 147–151 (2018).

    Article  ADS  Google Scholar 

  181. Taboada, I. & Stein, R. IceCube-190730A an astrophysical neutrino candidate in spatial coincidence with FSRQ PKS 1502+106. The Astronomer’s Telegram, No. 12967 (2019).

  182. Giommi, P. et al. 3HSP J095507.9+355101: a flaring extreme blazar coincident in space and time with IceCube-200107A. Astron. Astrophys. 640, L4 (2020).

    Article  ADS  Google Scholar 

  183. Reusch, S. et al. Candidate tidal disruption event AT2019fdr coincident with a high-energy neutrino. Phys. Rev. Lett. 128, 221101 (2022).

    Article  ADS  Google Scholar 

  184. van Velzen, S. et al. Establishing accretion flares from massive black holes as a major source of high-energy neutrinos. Preprint at https://arxiv.org/abs/2111.09391 (2021).

  185. Giommi, P. et al. Dissecting the regions around IceCube high-energy neutrinos: growing evidence for the blazar connection. Mon. Not. R. Astron. Soc. 497, 865–878 (2020).

    Article  ADS  Google Scholar 

  186. Plavin, A. V., Kovalev, Y. Y., Kovalev, Y. A. & Troitsky, S. V. Directional association of TeV to PeV astrophysical neutrinos with radio blazars. Astrophys. J. 908, 157 (2021).

    Article  ADS  Google Scholar 

  187. Ghadimi, A. & Santander, M. in Proc. 37th International Cosmic Ray Conference 1135 (IUPAP, 2021).

  188. Olausen, S. A. & Kaspi, V. M. The McGill magnetar catalog. Astrophys. J. Suppl. 212, 6 (2014).

    Article  ADS  Google Scholar 

  189. Abbasi, R. et al. in Proc. 37th International Cosmic Ray Conference 1136 (IUPAP, 2021).

  190. Veske, D. et al. in Proc. 37th International Cosmic Ray Conference 950 (IUPAP, 2021).

  191. Necker, J. et al. in Proc. 37th International Cosmic Ray Conference 1116 (IUPAP, 2021).

  192. Aartsen, M. G. et al. An all-sky search for three flavors of neutrinos from gamma-ray bursts with the IceCube neutrino observatory. Astrophys. J. 824, 115 (2016).

    Article  ADS  Google Scholar 

  193. Abbasi, R. et al. in Proc. 37th International Cosmic Ray Conference 1118 (IUPAP, 2021).

  194. Abbasi, R. et al. in Proc. 37th International Cosmic Ray Conference 971 (IUPAP, 2021).

  195. Aartsen, M. G. et al. Constraints on minute-scale transient astrophysical neutrino sources. Phys. Rev. Lett. 122, 051102 (2019).

    Article  ADS  Google Scholar 

  196. Necker, J. et al. ASAS-SN follow-up of IceCube high-energy neutrino alerts. Preprint at https://arxiv.org/abs/2204.00500 (2022).

  197. Stein, R. et al. Neutrino follow-up with the Zwicky Transient Facility: Results from the first 24 campaigns. Preprint at https://arxiv.org/abs/2203.17135 (2022).

  198. Biehl, D., Heinze, J. & Winter, W. Expected neutrino fluence from short gamma-ray burst 170817A and off-axis angle constraints. Mon. Not. R. Astron. Soc. 476, 1191–1197 (2018).

    Article  ADS  Google Scholar 

  199. Ahlers, M. & Halser, L. Neutrino fluence from gamma-ray bursts: off-axis view of structured jets. Mon. Not. R. Astron. Soc. 490, 4935–4943 (2019).

    Article  ADS  Google Scholar 

  200. Fang, K. & Olinto, A. V. High-energy neutrinos from sources in clusters of galaxies. Astrophys. J. 828, 37 (2016).

    Article  ADS  Google Scholar 

  201. Fang, K. & Murase, K. Linking high-energy cosmic particles by black hole jets embedded in large-scale structures. Nat. Phys. 14, 396–398 (2018).

    Article  Google Scholar 

  202. Hussain, S., Alves Batista, R., de Gouveia Dal Pino, E. M. & Dolag, K. High-energy neutrino production in clusters of galaxies. Mon. Not. R. Astron. Soc. 507, 1762–1774 (2021).

    Article  ADS  Google Scholar 

  203. Albert, A. et al. Search for high-energy neutrinos from bright GRBs with ANTARES. Mon. Not. R. Astron. Soc. 469, 906 (2017).

    Article  ADS  Google Scholar 

  204. Albert, A. et al. ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs. J. Cosmol. Astropart. Phys. 03, 092 (2021).

    ADS  Google Scholar 

  205. Yuan, C., Murase, K. & Mészáros, P. Complementarity of stacking and multiplet constraints on the blazar contribution to the cumulative high-energy neutrino intensity. Astrophys. J. 890, 25 (2020).

    Article  ADS  Google Scholar 

  206. Bartos, I., Veske, D., Kowalski, M., Marka, Z. & Marka, S. The IceCube pie chart: relative source contributions to the cosmic neutrino flux. Astrophys. J. 921, 45 (2021).

    Article  ADS  Google Scholar 

  207. Huber, M. in Proc. 36th International Cosmic Ray Conference 916 (IUPAP, 2020).

  208. Stein, R. in Proc. 36th International Cosmic Ray Conference 1016 (IUPAP, 2020).

  209. Abbasi, R. et al. Search for high-energy neutrinos from ultra-luminous infrared galaxies with IceCube. Astrophys. J. 926, 59 (2022).

    Article  ADS  Google Scholar 

  210. Aartsen, M. G. et al. Constraints on galactic neutrino emission with seven years of IceCube data. Astrophys. J. 849, 67 (2017).

    Article  ADS  Google Scholar 

  211. Abbasi, R. et al. in Proc. 37th International Cosmic Ray Conference 1133 (IUPAP, 2021).

  212. Zhou, B., Kamionkowski, M. & Liang, Y.-f Search for high-energy neutrino emission from radio-bright AGN. Phys. Rev. D 103, 123018 (2021).

    Article  ADS  Google Scholar 

  213. Abbasi, R. et al. Search for neutrino emission from cores of active galactic nuclei. Phys. Rev. D 106, 022005 (2022).

    Article  ADS  Google Scholar 

  214. Lipari, P. Proton and neutrino extragalactic astronomy. Phys. Rev. D 78, 083011 (2008).

    Article  ADS  Google Scholar 

  215. Ahlers, M. & Halzen, F. Pinpointing extragalactic neutrino sources in light of recent IceCube observations. Phys. Rev. D 90, 043005 (2014).

    Article  ADS  Google Scholar 

  216. Murase, K., Oikonomou, F. & Petropoulou, M. Blazar flares as an origin of high-energy cosmic neutrinos? Astrophys. J. 865, 124 (2018).

    Article  ADS  Google Scholar 

  217. Ackermann, M. et al. Astrophysics uniquely enabled by observations of high-energy cosmic neutrinos. Bull. Am. Astron. Soc. 51, 185 (2019).

    Google Scholar 

  218. Capel, F., Mortlock, D. J. & Finley, C. Bayesian constraints on the astrophysical neutrino source population from IceCube data. Phys. Rev. D 101, 123017 (2020).

    Article  ADS  Google Scholar 

  219. Abbasi, R. et al. Improved characterization of the astrophysical muon–neutrino flux with 9.5 years of IceCube data. Astrophys. J. 928, 50 (2022).

    Article  ADS  Google Scholar 

  220. Murase, K. & Fukugita, M. Energetics of high-energy cosmic radiations. Phys. Rev. D 99, 063012 (2019).

    Article  ADS  Google Scholar 

  221. Abdollahi, S. et al. Fermi large area telescope fourth source catalog. Astrophys. J. Suppl. 247, 33 (2020).

    Article  ADS  Google Scholar 

  222. Baldini, L. et al. Catalog of long-term transient sources in the first 10 yr of Fermi-LAT data. Astrophys. J. Supp. 256, 13 (2021).

    Article  ADS  Google Scholar 

  223. Fiorillo, D. F. G., Bustamante, M. & Valera, V. B. Near-future discovery of point sources of ultra-high-energy neutrinos. Preprint at https://arxiv.org/abs/2205.15985 (2022).

  224. Albert, A. et al. Search for multimessenger sources of gravitational waves and high-energy neutrinos with advanced LIGO during its first observing run, ANTARES, and IceCube. Astrophys. J. 870, 134 (2019).

    Article  ADS  Google Scholar 

  225. Aartsen, M. G. et al. IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo’s first gravitational-wave transient catalog. Astrophys. J. Lett. 898, L10 (2020).

    Article  ADS  Google Scholar 

  226. Miller, M. C. & Yunes, N. The new frontier of gravitational waves. Nature 568, 469–476 (2019).

    Article  ADS  Google Scholar 

  227. Bailes, M. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 3, 344–366 (2021).

    Article  Google Scholar 

  228. Aartsen, M. G. et al. Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 113, 101101 (2014).

    Article  ADS  Google Scholar 

  229. Aartsen, M. G. et al. Evidence for astrophysical muon neutrinos from the northern sky with IceCube. Phys. Rev. Lett. 115, 081102 (2015).

    Article  ADS  Google Scholar 

  230. Rott, C. Progress in neutrino astronomy. J. Korean Phys. Soc. 78, 864–872 (2021).

    Article  ADS  Google Scholar 

  231. Adrián-Martínez, S. et al. Letter of intent for KM3NeT 2.0. J. Phys. G Nucl. Part. Phys. 43, 084001 (2016).

    Article  ADS  Google Scholar 

  232. Allakhverdyan, V. A. et al. Follow-up of the IceCube alerts with the Baikal-GVD telescope. J. Instrum. 16, C11008 (2021).

    Article  Google Scholar 

  233. Agostini, M. et al. The Pacific Ocean Neutrino Experiment. Nat. Astron. 4, 913–915 (2020).

    Article  ADS  Google Scholar 

  234. Aartsen, M. G. et al. IceCube-Gen2: the window to the extreme Universe. J. Phys. G Nucl. Part. Phys. 48, 060501 (2021).

    Article  ADS  Google Scholar 

  235. Charrier, D. et al. Autonomous radio detection of air showers with the TREND50 antenna array. Astropart. Phys. 110, 15–29 (2019).

    Article  ADS  Google Scholar 

  236. Fargion, D. Discovering ultra-high-energy neutrinos through horizontal and upward τ air showers: evidence in terrestrial gamma flashes? Astrophys. J. 570, 909–925 (2002).

    Article  ADS  Google Scholar 

  237. Aab, A. et al. Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2019, 022 (2019).

    Article  Google Scholar 

  238. Romero-Wolf, A. et al. An Andean deep-valley detector for high-energy tau neutrinos. Preprint at https://arxiv.org/abs/2002.06475 (2020).

  239. Olinto, A. V. et al. The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory. J. Cosmol. Astropart. Phys. 2021, 007 (2021).

    Article  Google Scholar 

  240. Wang, A. et al. in Proc. 37th International Cosmic Ray Conference 1234 (IUPAP, 2021).

  241. Sasaki, M. & Wei-Shu Hou, G. Neutrino telescope array letter of intent: a large array of high resolution imaging atmospheric Cherenkov and fluorescence detectors for survey of air-showers from cosmic tau neutrinos in the PeV-EeV energy range. Preprint at arXiv https://arxiv.org/abs/1408.6244 (2014).

  242. Álvarez-Muñiz, J. et al. The Giant Radio Array for Neutrino Detection (GRAND): science and design. Sci. China Phys. Mech. Astron. 63, 219501 (2020).

    Article  ADS  Google Scholar 

  243. Wissel, S. et al. Expanding the reach of tau neutrino telescopes with the Beamforming Elevated Array for Cosmic Neutrinos (BEACON). Bull. Am. Astron. Soc. 51, 191 (2019).

    Google Scholar 

  244. Connolly, A. & Vieregg, A. G. in Neutrino Astronomy: Current Status, Future Prospects (eds Gaisser, T. & Karle, A.) 217–240 (World Scientific, 2017).

  245. The ARA Collaboration et al. in Proc. 36th International Cosmic Ray Conference 858 (IUPAP, 2019).

  246. Anker, A. et al. White Paper: ARIANNA-200 high energy neutrino telescope. Preprint at https://arxiv.org/abs/2004.09841 (2020).

  247. Aguilar, J. A. et al. Design and sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G). J. Instrum. 16, P03025 (2021).

    Article  Google Scholar 

  248. Deaconu, C. in Proc. 36th International Cosmic Ray Conference 867 (IUPAP, 2019).

  249. Abarr, Q. et al. The Payload for Ultrahigh Energy Observations (PUEO): a white paper. J. Instrum. 16, P08035 (2021).

    Article  Google Scholar 

  250. Kim, M., Archambault, S., Mase, K., Yoshida, S. & Ishihara, A. in Proc. 36th International Cosmic Ray Conference 933 (IUPAP, 2019).

  251. Barwick, S. et al. in Proc. 37th International Cosmic Ray Conference 1151 (IUPAP, 2021).

  252. Aartsen, M. G. et al. Energy reconstruction methods in the IceCube neutrino telescope. J. Instrum. 9, P03009 (2014).

    Article  Google Scholar 

  253. Aguilar, J. A. et al. Reconstructing the neutrino energy for in-ice radio detectors. Eur. Phys. J. C 82, 147 (2022).

    Article  ADS  Google Scholar 

  254. Mathieu, A. Multi-wavelength follow-up of ANTARES neutrino alerts. Thesis, Aix Marseille Université (2015).

  255. Pizzuto, A., Desai, A. & Hussain, R. in Proc. 37th International Cosmic Ray Conference 952 (IUPAP, 2021).

  256. Dornic, D., Coleiro, A., Colomer Molla, M., Kouchner, A. & Pradier, T. in Proc. 36th International Cosmic Ray Conference 872 (IUPAP, 2021).

  257. Barthelmy, S. et al. The Gamma-ray Coordinates Network. https://gcn.gsfc.nasa.gov.

  258. Blaufuss, E., Kintscher, T., Lu, L. & Tung, C. F. in Proc. 36th International Cosmic Ray Conference 1021 (IUPAP, 2020).

  259. Kampert, K.-H., Alejandro Mostafa, M. & Zas, E. Multi-messenger physics with the Pierre Auger Observatory. Front. Astron. Space Sci. 6, 24 (2019).

    Article  ADS  Google Scholar 

  260. Vigorito, V. et al. SNEWS - the supernova early warning system. J. Phys. Conf. Ser. 309, 012026 (2011).

    Article  Google Scholar 

  261. Ayala Solares, H. A. et al. The Astrophysical Multimessenger Observatory Network (AMON): performance and science program. Astropart. Phys. 114, 68–76 (2020).

    Article  ADS  Google Scholar 

  262. Mostafá, M. The Astrophysical Multi-messenger Observatory Network. Nat. Rev. Phys. 2, 446–448 (2020).

    Article  Google Scholar 

  263. Nordin, J. et al. Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves. Astron. Astrophys. 631, A147 (2019).

    Article  MathSciNet  Google Scholar 

  264. Bai, X. et al. The Large High Altitude Air Shower Observatory (LHAASO) science white paper. Preprint at https://arxiv.org/abs/1905.02773v1 (2019).

  265. Goodman, J. A. HAWC: a next generation all-sky gamma-ray telescope. AIP Conf. Proc. 917, 206–209 (2007).

    Article  ADS  Google Scholar 

  266. Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    Article  ADS  Google Scholar 

  267. Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

    Article  ADS  Google Scholar 

  268. Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  269. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2018).

    Article  ADS  Google Scholar 

  270. Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    Article  ADS  Google Scholar 

  271. Maier, G. et al. in Proc. 36th International Cosmic Ray Conference 733 (IUPAP, 2020).

  272. Aharonian, F. et al. Observations of the Crab nebula with HESS. Astron. Astrophys. 457, 899–915 (2006).

    Article  ADS  Google Scholar 

  273. Morokuma, T. et al. Follow-up observations for IceCube-170922A: detection of rapid near-infrared variability and intensive monitoring of TXS 0506+056. Publ. Astron. Soc. Jpn. 73, 25–43 (2021).

    Article  ADS  Google Scholar 

  274. Sasada, M. et al. IceCubeCascade-210416a: Kanata Optical Imaging of 3C 279. GRB Coordinates Network, Circular Service No. 29820 (NASA, 2021).

  275. Aleksic, J. et al. The major upgrade of the MAGIC telescopes, part II: a performance study using observations of the Crab Nebula. Astropart. Phys. 72, 76–94 (2016).

    Article  ADS  Google Scholar 

  276. Lipunov, V. et al. Master Robotic Net. Adv. Astron. 2010, 349171 (2010).

    Article  ADS  Google Scholar 

  277. Park, N. & VERITAS Collaboration in Proc. 34th International Cosmic Ray Conference 771 (IUPAP, 2016).

  278. XMM-Newton Science Operations Centre. XMM-Newton Users Handbook. http://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/node1.html.

  279. Nandra, K. et al. The hot and energetic universe: a white paper presenting the science theme motivating the Athena+mission. Preprint at https://arxiv.org/abs/1306.2307 (2013).

  280. Boër, M. et al. in Proc. 7th European Conference on Space Debris (ESA, 2017).

  281. Garrappa, S. et al. in Proc. 37th International Cosmic Ray Conference 956 (IUPAP, 2021).

  282. Ferrigno, C. et al. Multi-messenger astronomy with INTEGRAL. New Astron. Rev. 92, 101595 (2021).

    Article  Google Scholar 

  283. Gehrels, N. et al. The swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    Article  ADS  Google Scholar 

  284. Wei, J. et al. The deep and transient universe in the SVOM era: new challenges and opportunities - scientific prospects of the SVOM mission. Preprint at https://arxiv.org/abs/1610.06892 (2016).

  285. Selina, R. J. et al. in Ground-based and Airborne Telescopes VII (eds Marshall, H. K. & Spyromilio, J.) 107001O (SPIE, 2018).

  286. Lonsdale, C. J. et al. The Murchison Widefield Array: design overview. IEEE Proc. 97, 1497–1506 (2009).

    Article  ADS  Google Scholar 

  287. Jonas, J. in MeerKAT Science: On the Pathway to the SKA (MeerKAT2016), 001 (2018).

  288. Acero, F. et al. French SKA White Book - The French Community towards the Square Kilometre Array. Preprint at https://arxiv.org/abs/1712.06950 (2017).

  289. Hook, I. M. et al. The Gemini–North Multi-Object Spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).

    Article  ADS  Google Scholar 

  290. Cepa, J. et al. in Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (eds Iye, M. & Moorwood, A. F. M.) 1739–1749 (SPIE, 2003).

  291. Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    Article  ADS  Google Scholar 

  292. Rockosi, C. et al. in Ground-based and Airborne Instrumentation for Astronomy III (eds McLean, I. S., Ramsay, S. K. & Takami, H.) 77350R (SPIE, 2010).

  293. Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO very large telescope. Astron. Astrophys. 536, A105 (2011).

    Article  Google Scholar 

  294. McEnery, J. et al. All-sky Medium Energy Gamma-ray Observatory: exploring the extreme multimessenger universe. Bull. Am. Astron. Soc. 51, 245 (2019).

    Google Scholar 

  295. Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

    Article  ADS  Google Scholar 

  296. Acciari, V. A. et al. in Proc. 37th International Cosmic Ray Conference 960 (IUPAP, 2021).

  297. Croft, S. et al. Murchison Widefield Array limits on radio emission from ANTARES neutrino events. Astrophys. J. 820, L24 (2016).

    Article  ADS  Google Scholar 

  298. Coleiro, A. & Chaty, S. VLT/X-Shooter spectrum of the blazar TXS 0506+056 (located inside the IceCube-170922A error box). The Astronomer’s Telegram, No. 10840 (2017).

  299. Paiano, S., Falomo, R., Treves, A. & Scarpa, R. The redshift of the BL Lac object TXS 0506+056. Astrophys. J. 854, L32 (2018).

    Article  ADS  Google Scholar 

  300. Keivani, A. et al. A multimessenger picture of the flaring blazar TXS 0506+056: implications for high-energy neutrino emission and cosmic-ray acceleration. Astrophys. J. 864, 84 (2018).

    Article  ADS  Google Scholar 

  301. Tetarenko, A. J., Sivakoff, G. R., Kimball, A. E. & Miller-Jones, J. C. A. VLA radio observations of the blazar TXS 0506+056 associated with the IceCube-170922A neutrino event. The Astronomer’s Telegram, No. 10861 (2017).

  302. Krauß, F. et al. Multimessenger observations of counterparts to IceCube-190331A. Mon. Not. R. Astron. Soc. 497, 2553–2561 (2020).

    Article  ADS  Google Scholar 

  303. Aartsen, M. G. et al. The detection of a SN IIn in optical follow-up observations of IceCube neutrino events. Astrophys. J. 811, 52 (2015).

    Article  ADS  Google Scholar 

  304. Tetarenko, A. et al. ANTARES neutrino detection: a preliminary VLA catalogue of radio source components and their variability levels in the field. The Astronomer’s Telegram, No. 8034 (2015).

  305. Hallinan, G. & Kunal Mooley, K. Jansky VLA observation of the ANTARES neutrino detection region. The Astronomer’s Telegram, No. 7999 (2015).

  306. Paiano, S. et al. The spectra of IceCube neutrino candidate sources – I. Optical spectroscopy of blazars. Mon. Not. R. Astron. Soc. 504, 3338–3353 (2021).

    Article  ADS  Google Scholar 

  307. Aartsen, M. G. et al. Observation and characterization of a cosmic muon neutrino flux from the Northern Hemisphere using six years of IceCube data. Astrophys. J. 833, 3 (2016).

    Article  ADS  Google Scholar 

  308. Kiehlmann, S., Hovatta, T., Kadler, M., Max-Moerbeck, W. & Readhead, A. C. S. Neutrino candidate source FSRQ PKS 1502+106 at highest flux density at 15 GHz. The Astronomer’s Telegram, No. 12996 (2019).

  309. Abdo, A. A. et al. PKS 1502+106: a new and distant gamma-ray blazar in outburst discovered by the Fermi Large Area Telescope. Astrophys. J. 710, 810–827 (2010).

    Article  ADS  Google Scholar 

  310. Schumacher, L. J. et al. in Proc. 37th International Cosmic Ray Conference 1185 (IUPAP, 2021).

  311. Stein, R., Franckowiak, A., Necker, J., Gezari, S. & Velzen, S. V. Candidate counterparts to IceCube-191001A with ZTF. The Astronomer’s Telegram, No. 13160 (2019).

  312. Abbasi, R. et al. A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory. J. Instrum. 16, P07041 (2021).

    Article  Google Scholar 

  313. De Sio, C. Machine learning in KM3NeT. EPJ Web Conf. 207, 05004 (2019).

    Article  Google Scholar 

  314. Allen, G. et al. Deep learning for multi-messenger astrophysics: a gateway for discovery in the big data era. Preprint at https://arxiv.org/abs/1902.00522 (2019).

  315. Szadkowski, Z. & Pytel, K. Artificial neural network as a FPGA trigger for a detection of very inclined air showers. IEEE Trans. Nucl. Sci. 62, 1002–1009 (2015).

    Article  ADS  Google Scholar 

  316. Szadkowski, Z., Głas, D., Pytel, K. & Wiedeński, M. Optimization of an FPGA trigger based on an artificial neural network for the detection of neutrino-induced air showers. IEEE Trans. Nucl. Sci. 64, 1271–1281 (2017).

    Article  ADS  Google Scholar 

  317. Huennefeld, M. in Proc. 35th International Cosmic Ray Conference 1057 (IUPAP, 2018).

  318. Choma, N. et al. Graph neural networks for IceCube signal classification. Preprint at https://arxiv.org/abs/1809.06166 (2018).

  319. García-Méndez, J., Geißelbrecht, N., Eberl, T., Ardid, M. & Ardid, S. Deep learning reconstruction in ANTARES. J. Instrum. 16, C09018 (2021).

    Article  Google Scholar 

  320. Reck, S., Guderian, D., Vermariën, G. & Domi, A. Graph Neural Networks for reconstruction and classification in KM3NeT. J. Instrum. 16, C10011 (2021).

    Article  Google Scholar 

  321. Abbasi, R. et al. A convolutional neural network based cascade reconstruction for the IceCube neutrino observatory. J. Instrum. 16, P07041 (2021).

    Article  Google Scholar 

  322. Minh, M. H. in 37th International Cosmic Ray Conference 1044 (IUPAP, 2021).

  323. Fraga, B. M. O. et al. Deep learning blazar classification based on multifrequency spectral energy distribution data. Mon. Not. R. Astron. Soc. 505, 1268–1279 (2021).

    Article  ADS  Google Scholar 

  324. Vicedomini, M., Brescia, M., Cavuoti, S., Riccio, G. & Longo, G. in Intelligent Astrophysics. Emergence, Complexity and Computation Vol. 39 (eds Zelinka, I., Brescia, M. & Baron, D.) 81–113 (2021).

  325. Lopez Portilla, M., Di Palma, I., Drago, M., Cerda-Duran, P. & Ricci, F. Deep learning for multimessenger core-collapse supernova detection. Phys. Rev. D 103, 063011 (2021).

    Article  ADS  Google Scholar 

  326. Cuoco, E., Patricelli, B., Iess, A. & Morawski, F. Multimodal analysis of gravitational wave signals and gamma-ray bursts from binary neutron star mergers. Universe 7, 394 (2021).

    Article  ADS  Google Scholar 

  327. George, D. & Huerta, E. A. Deep neural networks to enable real-time multimessenger astrophysics. Phys. Rev. D 97, 044039 (2018).

    Article  ADS  Google Scholar 

  328. Baltus, G. et al. Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal. Phys. Rev. D 103, 102003 (2021).

    Article  ADS  Google Scholar 

  329. Yu, H., Adhikari, R. X., Magee, R., Sachdev, S. & Chen, Y. Early warning of coalescing neutron-star and neutron-star-black-hole binaries from the nonstationary noise background using neural networks. Phys. Rev. D 104, 062004 (2021).

    Article  ADS  Google Scholar 

  330. Albert, A. et al. Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. Lett. 850, L35 (2017).

    Article  ADS  Google Scholar 

  331. Venters, T. M. et al. POEMMA’s target of opportunity sensitivity to cosmic neutrino transient sources. Phys. Rev. D 102, 123013 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Many thanks to our numerous colleagues for providing detailed input on the cited experiments, sometimes performing new calculations and discussing with us about the relevant numbers to quote: M. Ackermann, J. Alvarez Muñiz, C. Arguelles, J. Ballet, D. Barret, M. Boer, S. Buson, M. Bustamante, K. Chambers, A. Coleiro, A. Coleman, A. Connolly, F. Daigne, C. Deaconu, M. de Naurois, K. de Vries, D. Dornic, C. Haack, C. James, A. Karle, M. Kasliwal, C. Kopper, M. Lemoine, V. Lipunov, O. Martineau-Huynh, M. Mostafa, N. Otte, N. Park, L. Piro, S. Prunet, E. Resconi, A. Romero-Wolf, M. Santander, M. Sasaki, L. Schumacher, F. Schüssler, B. Shappee, R. Stein, O. Suvorova, J. Tonry, M. Unger, N. van Eindhoven, A. Vincent, S. Wissel, J. Wood, Y. Zhang. We thank A. Coleiro, S. Kimura and F. Schüssler for insightful feedback that helped improve the manuscript. C.G. is supported by the Neil Gehrels Prize Postdoctoral Fellowship. K.K. is supported by the APACHE grant (ANR-16-CE31-0001) of the French Agence Nationale de la Recherche.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Claire Guépin, Kumiko Kotera or Foteini Oikonomou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Rafael Alves Batista and the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guépin, C., Kotera, K. & Oikonomou, F. High-energy neutrino transients and the future of multi-messenger astronomy. Nat Rev Phys 4, 697–712 (2022). https://doi.org/10.1038/s42254-022-00504-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00504-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing