Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building the Himalaya from tectonic to earthquake scales

Abstract

Convergence of the Indian Plate towards Eurasia has led to the building of the Himalaya, the highest mountain range on Earth. Active mountain building involves a complex interplay between permanent tectonic processes and transient seismic events, which remain poorly understood. In this Review, we examine the feedbacks between long-term tectonic deformation (over millions of years) and the seismic cycle (years to centuries) in the Himalaya. We discuss how surface morphology of the Himalaya indicates that the convergence is largely accommodated by slip on the Main Himalayan Thrust plate boundary fault, which developed in the roots of the mountain range over millions of years. At shorter (decadal) timescales, tectonic geodesy reveals that elastic strain is periodically released via earthquakes. We use examples from earthquake cycle models to suggest that partial ruptures could primarily occur in the downdip region of the Main Himalayan Thrust. Great (Mw 8+) Himalayan earthquakes are more commonly associated with complete megathrust ruptures, which release accumulated residual strain. By synthesizing numerous observations that co-vary along strike, we highlight that tectonic structures that developed over millions of years can influence stress accumulation, structural segmentation, earthquake rupture extent and location, and, consequently, the growth of the mountain range.

Key points

  • The Himalayan mountain belt is a unique subaerial orogenic wedge characterized by tectonically rapid, ongoing crustal shortening and thickening, intense surface denudation and recurrent great (Mw 8+) earthquakes.

  • The history of the orogen has been investigated from long (million-year) to short (seconds to days) timescales using a variety of geological and geophysical techniques.

  • The magnitude 7.8 Gorkha earthquake and aftershocks were monitored by extensive local geophysical networks, providing a unique set of observations of a major Himalayan earthquake and the Himalayan seismic cycle.

  • Observations across the Himalaya reveal along-strike segmentation patterns at various temporal scales, controlled by inherited tectonic complexities developed over millions of years.

  • Developing a complete understanding of deformation across timescales from seconds to millions of years requires an integrated, interdisciplinary effort.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-term convergence and collision of India with Eurasia and geometry of the subducting plate.
Fig. 2: Geological map and 3D cross section of the Himalaya.
Fig. 3: Plate convergence velocity field and characteristics of the 2015 Mw 7.8 Gorkha earthquake.
Fig. 4: Crustal-scale duplexing and seismic behaviour of the mid-crustal ramp.
Fig. 5: Segmentation indicators of the Himalaya.
Fig. 6: Cross section across central Nepal showing different proxies for uplift rate.
Fig. 7: Datasets that illuminate the tectonics of the Himalaya.

Similar content being viewed by others

References

  1. Bilham, R. Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol. Soc. Spec. Publ. 483, 423–482 (2019).

    Google Scholar 

  2. Wesnousky, S. G. Great pending Himalaya earthquakes. Seismol. Res. Lett. 91, 3334–3342 (2020).

    Google Scholar 

  3. Turcotte, D. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002).

  4. Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2019).

  5. Dal Zilio, L., van Dinther, Y., Gerya, T. V. & Pranger, C. C. Seismic behaviour of mountain belts controlled by plate convergence rate. Earth Planet. Sci. Lett. 482, 81–92 (2018).

    Google Scholar 

  6. Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34 (1990).

    Google Scholar 

  7. Willett, S. D. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104, 28957–28981 (1999).

    Google Scholar 

  8. Burbank, D. et al. Decoupling of erosion and precipitation in the Himalayas. Nature 426, 652–655 (2003).

    Google Scholar 

  9. Whipple, K. X. The influence of climate on the tectonic evolution of mountain belts. Nat. Geosci. 2, 97–104 (2009).

    Google Scholar 

  10. Whittaker, A. C. How do landscapes record tectonics and climate? Lithosphere 4, 160–164 (2012).

    Google Scholar 

  11. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 31, 357–396 (1993).

    Google Scholar 

  12. Zhisheng, A., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).

    Google Scholar 

  13. Powell, C. M. A. & Conaghan, P. Plate tectonics and the Himalayas. Earth Planet. Sci. Lett. 20, 1–12 (1973).

    Google Scholar 

  14. Molnar, P. & Tapponnier, P. Cenozoic tectonics of Asia: effects of a continental collision. Science 189, 419–426 (1975).

    Google Scholar 

  15. Tapponnier, P., Peltzer, G., Le Dain, A., Armijo, R. & Cobbold, P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10, 611–616 (1982).

    Google Scholar 

  16. Yin, A. & Harrison, T. M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28, 211–280 (2000).

    Google Scholar 

  17. Avouac, J.-P. Mountain building: from earthquakes to geologic deformation. Treatise Geophys. 6, 381–432 (2015).

    Google Scholar 

  18. Avouac, J.-P. & Tapponnier, P. Kinematic model of active deformation in central Asia. Geophys. Res. Lett. 20, 895–898 (1993).

    Google Scholar 

  19. Copley, A., Avouac, J.-P. & Royer, J.-Y. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J. Geophys. Res. Solid Earth 115, B03410 (2010).

    Google Scholar 

  20. Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Réunion plume head. Nature 475, 47–52 (2011).

    Google Scholar 

  21. de Sigoyer, J. et al. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology 28, 487–490 (2000).

    Google Scholar 

  22. Ding, L., Kapp, P. & Wan, X. Paleocene–Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics 24, TC3001 (2005).

    Google Scholar 

  23. Patriat, P. & Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–621 (1984).

    Google Scholar 

  24. Pusok, A. E. & Stegman, D. R. The convergence history of India-Eurasia records multiple subduction dynamics processes. Sci. Adv. 6, eaaz8681 (2020).

    Google Scholar 

  25. DeMets, C., Merkouriev, S. & Jade, S. High-resolution reconstructions and GPS estimates of India–Eurasia and India–Somalia plate motions: 20 Ma to the present. Geophys. J. Int. 220, 1149–1171 (2020).

    Google Scholar 

  26. Molnar, P. & Stock, J. M. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28, TC3001 (2009).

    Google Scholar 

  27. Capitanio, F., Morra, G., Goes, S., Weinberg, R. & Moresi, L. India–Asia convergence driven by the subduction of the Greater Indian continent. Nat. Geosci. 3, 136–139 (2010).

    Google Scholar 

  28. Burg, J. & Chen, G. Tectonics and structural zonation of southern Tibet, China. Nature 311, 219–223 (1984).

    Google Scholar 

  29. Burchfiel, B. C. et al. The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt Vol. 269 (Geological Society of America, 1992).

  30. Jixiang, Y., Juntao, X., Chengjie, L. & Huan, L. The Tibetan plateau: regional stratigraphic context and previous work. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 327, 5–52 (1988).

    Google Scholar 

  31. Brookfield, M. The Himalayan passive margin from Precambrian to Cretaceous times. Sediment. Geol. 84, 1–35 (1993).

    Google Scholar 

  32. Gansser, A. Geology of the Himalayas (Interscience, 1964).

  33. Schelling, D. & Arita, K. Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal Himalaya. Tectonics 10, 851–862 (1991).

    Google Scholar 

  34. Mugnier, J. L. et al. The Siwaliks of western Nepal: I. Geometry and kinematics. J. Asian Earth Sci. 17, 629–642 (1999).

    Google Scholar 

  35. DeCelles, P. G. et al. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20, 487–509 (2001).

    Google Scholar 

  36. Meigs, A. J., Burbank, D. W. & Beck, R. A. Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya. Geology 23, 423–426 (1995).

    Google Scholar 

  37. Ghoshal, S. et al. Constraining central Himalayan (Nepal) fault geometry through integrated thermochronology and thermokinematic modeling. Tectonics 39, e2020TC006399 (2020).

    Google Scholar 

  38. Gansser, A. The geodynamic history of the Himalaya. Zagros Hindu Kush Himalaya Geodyn. Evol. 3, 111–121 (1981).

    Google Scholar 

  39. Catlos, E. J. et al. Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J. Geophys. Res. Solid Earth 106, 16177–16204 (2001).

    Google Scholar 

  40. Robinson, D. et al. Kinematic model for the Main Central thrust in Nepal. Geology 31, 359–362 (2003).

    Google Scholar 

  41. Davies, G. F. & Brune, J. N. Regional and global fault slip rates from seismicity. Nat. Phys. Sci. 229, 101–107 (1971).

    Google Scholar 

  42. Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    Google Scholar 

  43. Bollinger, L. et al. Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics 23, TC5015 (2004).

    Google Scholar 

  44. Robinson, D. M., DeCelles, P. G., Patchett, P. J. & Garzione, C. N. The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth Planet. Sci. Lett. 192, 507–521 (2001).

    Google Scholar 

  45. Brown, L. et al. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science 274, 1688–1690 (1996).

    Google Scholar 

  46. Hauck, M., Nelson, K., Brown, L., Zhao, W. & Ross, A. Crustal structure of the Himalayan orogen at ~90° east longitude from Project INDEPTH deep reflection profiles. Tectonics 17, 481–500 (1998).

    Google Scholar 

  47. Boullier, A.-M., France-Lanord, C., Dubessy, J., Adamy, J. & Champenois, M. Linked fluid and tectonic evolution in the High Himalaya mountains (Nepal). Contrib. Mineral. Petrol. 107, 358–372 (1991).

    Google Scholar 

  48. Lemonnier, C. et al. Electrical structure of the Himalaya of central Nepal: High conductivity around the mid-crustal ramp along the MHT. Geophys. Res. Lett. 26, 3261–3264 (1999).

    Google Scholar 

  49. Hetényi, G. Evolution of deformation of the Himalayan prism: From imaging to modelling. PhD thesis, École Normale Supérieure–Université Paris-Sud XI (2007).

  50. Nábeˇlek, J. et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).

    Google Scholar 

  51. Acton, C., Priestley, K., Mitra, S. & Gaur, V. Crustal structure of the Darjeeling—Sikkim Himalaya and southern Tibet. Geophys. J. Int. 184, 829–852 (2011).

    Google Scholar 

  52. Subedi, S. et al. Imaging the Moho and the Main Himalayan Thrust in Western Nepal with receiver functions. Geophys. Res. Lett. 45, 13–222 (2018).

    Google Scholar 

  53. Singer, J., Kissling, E., Diehl, T. & Hetényi, G. The underthrusting Indian crust and its role in collision dynamics of the Eastern Himalaya in Bhutan: Insights from receiver function imaging. J. Geophys. Res. Solid Earth 122, 1152–1178 (2017).

    Google Scholar 

  54. Duputel, Z. et al. The 2015 Gorkha earthquake: a large event illuminating the Main Himalayan Thrust fault. Geophys. Res. Lett. 43, 2517–2525 (2016).

    Google Scholar 

  55. Caldwell, W. B. et al. Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth Planet. Sci. Lett. 367, 15–27 (2013).

    Google Scholar 

  56. Schulte-Pelkum, V. et al. Imaging the Indian subcontinent beneath the Himalaya. Nature 435, 1222–1225 (2005).

    Google Scholar 

  57. Cattin, R. & Avouac, J. Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J. Geophys. Res. Solid Earth 105, 13389–13407 (2000).

    Google Scholar 

  58. Vergne, J., Cattin, R. & Avouac, J. On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults. Geophys. J. Int. 147, 155–162 (2001).

    Google Scholar 

  59. Hoste-Colomer, R., Bollinger, L., Lyon-Caen, H., Burtin, A. & Adhikari, L. Lateral structure variations and transient swarm revealed by seismicity along the Main Himalayan Thrust north of Kathmandu. Tectonophysics 714, 107–116 (2017).

    Google Scholar 

  60. Hoste-Colomer, R. et al. Lateral variations of the midcrustal seismicity in western Nepal: Seismotectonic implications. Earth Planet. Sci. Lett. 504, 115–125 (2018).

    Google Scholar 

  61. Baillard, C. et al. Automatic analysis of the Gorkha earthquake aftershock sequence: evidences of structurally segmented seismicity. Geophys. J. Int. 209, 1111–1125 (2017).

    Google Scholar 

  62. Yamada, M., Kandel, T., Tamaribuchi, K. & Ghosh, A. 3D fault structure inferred from a refined aftershock catalog for the 2015 Gorkha earthquake in Nepal. Bull. Seismol. Soc. Am. 110, 26–37 (2020).

    Google Scholar 

  63. Mendoza, M. et al. Duplex in the Main Himalayan Thrust illuminated by aftershocks of the 2015 Mw 7.8 Gorkha earthquake. Nat. Geosci. 12, 1018–1022 (2019).

    Google Scholar 

  64. Lavé, J. & Avouac, J.-P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res. Solid Earth 105, 5735–5770 (2000).

    Google Scholar 

  65. Lavé, J. & Avouac, J. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res. Solid Earth 106, 26561–26591 (2001).

    Google Scholar 

  66. Seeber, L. & Gornitz, V. River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92, 335–367 (1983).

    Google Scholar 

  67. Malik, J. N. et al. Active fault, fault growth and segment linkage along the Janauri anticline (frontal foreland fold), NW Himalaya, India. Tectonophysics 483, 327–343 (2010).

    Google Scholar 

  68. Wesnousky, S. G., Kumar, S., Mohindra, R. & Thakur, V. Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics 18, 967–976 (1999).

    Google Scholar 

  69. Almeida, R. V., Hubbard, J., Liberty, L., Foster, A. & Sapkota, S. N. Seismic imaging of the Main Frontal Thrust in Nepal reveals a shallow décollement and blind thrusting. Earth Planet. Sci. Lett. 494, 216–225 (2018).

    Google Scholar 

  70. Bollinger, L. et al. Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main Frontal Thrust. J. Geophys. Res. Solid Earth 119, 7123–7163 (2014).

    Google Scholar 

  71. Ader, T. et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. J. Geophys. Res. Solid Earth 117, B04403 (2012).

    Google Scholar 

  72. Bettinelli, P. et al. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J. Geodesy 80, 567–589 (2006).

    Google Scholar 

  73. Bilham, R., Larson, K. & Freymueller, J. GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386, 61–64 (1997).

    Google Scholar 

  74. Chen, Q. et al. A deforming block model for the present-day tectonics of Tibet. J. Geophys. Res. Solid Earth 109, B01403 (2004).

    Google Scholar 

  75. Jouanne, F. et al. Oblique convergence in the Himalayas of western Nepal deduced from preliminary results of GPS measurements. Geophys. Res. Lett. 26, 1933–1936 (1999).

    Google Scholar 

  76. Wang, Q. et al. Present-day crustal deformation in China constrained by global positioning system measurements. Science 294, 574–577 (2001).

    Google Scholar 

  77. Wang, M. & Shen, Z.-K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 125, e2019JB018774 (2020).

    Google Scholar 

  78. Stevens, V. & Avouac, J. Interseismic coupling on the main Himalayan thrust. Geophys. Res. Lett. 42, 5828–5837 (2015).

    Google Scholar 

  79. Li, S. et al. Geodetic imaging mega-thrust coupling beneath the Himalaya. Tectonophysics 747, 225–238 (2018).

    Google Scholar 

  80. Wang, K., Hu, Y. & He, J. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484, 327–332 (2012).

    Google Scholar 

  81. Avouac, J.-P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu. Rev. Earth Planet. Sci. 43, 233–271 (2015).

    Google Scholar 

  82. Stevens, V. & Avouac, J.-P. Millenary Mw > 9.0 earthquakes required by geodetic strain in the Himalaya. Geophys. Res. Lett. 43, 1118–1123 (2016).

    Google Scholar 

  83. Almeida, R. et al. Can the updip limit of frictional locking on megathrusts be detected geodetically? Quantifying the effect of stress shadows on near-trench coupling. Geophys. Res. Lett. 45, 4754–4763 (2018).

    Google Scholar 

  84. Dal Zilio, L., Jolivet, R. & van Dinther, Y. Segmentation of the Main Himalayan Thrust illuminated by Bayesian inference of interseismic coupling. Geophys. Res. Lett. 47, e2019GL086424 (2020).

    Google Scholar 

  85. Yadav, R. K. et al. Strong seismic coupling underneath Garhwal–Kumaun region, NW Himalaya, India. Earth Planet. Sci. Lett. 506, 8–14 (2019).

    Google Scholar 

  86. Sreejith, K. et al. Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Sci. Rep. 8, 16697 (2018).

    Google Scholar 

  87. Ponraj, M. et al. Estimation of strain distribution using GPS measurements in the Kumaun region of Lesser Himalaya. J. Asian Earth Sci. 39, 658–667 (2010).

    Google Scholar 

  88. Marechal, A. et al. Evidence of interseismic coupling variations along the Bhutan Himalayan arc from new GPS data. Geophys. Res. Lett. 43, 12,399–12,406 (2016).

    Google Scholar 

  89. Bilham, R., Mencin, D., Bendick, R. & Bürgmann, R. Implications for elastic energy storage in the Himalaya from the Gorkha 2015 earthquake and other incomplete ruptures of the Main Himalayan Thrust. Quat. Int. 462, 3–21 (2017).

    Google Scholar 

  90. Bollinger, L., Avouac, J., Cattin, R. & Pandey, M. Stress buildup in the Himalaya. J. Geophys. Res. Solid Earth 109, B11405 (2004).

    Google Scholar 

  91. Bilham, R. Slow tilt reversal of the Lesser Himalaya between 1862 and 1992 at 78°E, and bounds to the southeast rupture of the 1905 Kangra earthquake. Geophys. J. Int. 144, 713–728 (2001).

    Google Scholar 

  92. Seeber, L. & Armbruster, J. G. Great detachment earthquakes along the Himalayan arc and long-term forecasting. Earthq. Pred. Int. Rev. 4, 259–277 (1981).

    Google Scholar 

  93. Avouac, J.-P., Ayoub, F., Leprince, S., Konca, O. & Helmberger, D. V. The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet. Sci. Lett. 249, 514–528 (2006).

    Google Scholar 

  94. Nakata, T., Kumura, K. & Rockwell, T. First successful paleoseismic trench study on active faults in the Himalaya. Eos Trans. AGU 79, 459–486 (1998).

    Google Scholar 

  95. Arora, S. & Malik, J. N. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies. Geosci. Lett. 4, 19 (2017).

    Google Scholar 

  96. Lavé, J. et al. Evidence for a great medieval earthquake (~1100 A.D.) in the central Himalayas, Nepal. Science 307, 1302–1305 (2005).

    Google Scholar 

  97. Wesnousky, S. G. et al. Geological observations on large earthquakes along the Himalayan frontal fault near Kathmandu, Nepal. Earth Planet. Sci. Lett. 457, 366–375 (2017).

    Google Scholar 

  98. Wesnousky, S. G., Kumahara, Y., Chamlagain, D. & Neupane, P. C. Large Himalayan Frontal Thrust paleoearthquake at Khayarmara in eastern Nepal. J. Asian Earth Sci. 174, 346–351 (2019).

    Google Scholar 

  99. Pant, M. R. A step toward a historical seismicity of Nepal. Adarsa 2, 29–60 (2002).

    Google Scholar 

  100. Sapkota, S. et al. Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat. Geosci. 6, 71–76 (2013).

    Google Scholar 

  101. Bollinger, L., Tapponnier, P., Sapkota, S. & Klinger, Y. Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake? Earth Planets Space 68, 12 (2016).

    Google Scholar 

  102. Yule, D., Dawson, S., Lave, J., Sapkota, S. & Tiwari, D. Possible evidence for surface rupture of the Main Frontal Thrust during the great 1505 Himalayan earthquake, far-western Nepal. In AGU Fall Meeting abstract S33C-05 (2006).

  103. Bilham, R., Gaur, V. K. & Molnar, P. Himalayan seismic hazard. Science 293, 1442–1444 (2001).

    Google Scholar 

  104. Ghazoui, Z. et al. Potentially large post-1505 AD earthquakes in western Nepal revealed by a lake sediment record. Nat. Commun. 10, 2258 (2019).

    Google Scholar 

  105. Bilham, R. & England, P. Plateau ‘pop-up’ in the great 1897 Assam earthquake. Nature 410, 806–809 (2001).

    Google Scholar 

  106. England, P. & Bilham, R. The Shillong Plateau and the great 1897 Assam earthquake. Tectonics 34, 1792–1812 (2015).

    Google Scholar 

  107. Coudurier-Curveur, A. et al. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis. Earth Planet. Sci. Lett. 531, 115928 (2020).

    Google Scholar 

  108. Wallace, K., Bilham, R., Blume, F., Gaur, V. & Gahalaut, V. Surface deformation in the region of the 1905 Kangra Mw = 7.8 earthquake in the period 1846–2001. Geophys. Res. Lett. 32, L15307 (2005).

    Google Scholar 

  109. Avouac, J.-P., Meng, L., Wei, S., Wang, T. & Ampuero, J.-P. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat. Geosci. 8, 708–711 (2015).

    Google Scholar 

  110. Galetzka, J. et al. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science 349, 1091–1095 (2015).

    Google Scholar 

  111. Adhikari, L. et al. The aftershock sequence of the 2015 April 25 Gorkha–Nepal earthquake. Geophys. Suppl. Mon. Not. R. Astron. Soc. 203, 2119–2124 (2015).

    Google Scholar 

  112. Bai, L. et al. Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal. Sci. Adv. 5, eaav0723 (2019).

    Google Scholar 

  113. Lindsey, E. O. et al. Line-of-sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock. Geophys. Res. Lett. 42, 6655–6661 (2015).

    Google Scholar 

  114. Zuo, R., Qu, C., Shan, X., Zhang, G. & Song, X. Coseismic deformation fields and a fault slip model for the Mw7.8 mainshock and Mw7.3 aftershock of the Gorkha-Nepal 2015 earthquake derived from Sentinel-1A SAR interferometry. Tectonophysics 686, 158–169 (2016).

    Google Scholar 

  115. Wang, K. & Fialko, Y. Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophys. Res. Lett. 42, 7452–7458 (2015).

    Google Scholar 

  116. Grandin, R. et al. Rupture process of the Mw = 7.9 2015 Gorkha earthquake (Nepal): insights into Himalayan megathrust segmentation. Geophys. Res. Lett. 42, 8373–8382 (2015).

    Google Scholar 

  117. Elliott, J. et al. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 9, 174–180 (2016).

    Google Scholar 

  118. Hubbard, J. et al. Structural segmentation controlled the 2015 Mw 7.8 Gorkha earthquake rupture in Nepal. Geology 44, 639–642 (2016).

    Google Scholar 

  119. Whipple, K. X., Shirzaei, M., Hodges, K. V. & Arrowsmith, J. R. Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake. Nat. Geosci. 9, 711–716 (2016).

    Google Scholar 

  120. Karplus, M. S. et al. A rapid response network to record aftershocks of the 2015 M 7.8 Gorkha earthquake in Nepal. Seismol. Res. Lett. 91, 2399–2408 (2020).

    Google Scholar 

  121. Dal Zilio, L., van Dinther, Y., Gerya, T. & Avouac, J.-P. Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nat. Commun. 10, 48 (2019).

    Google Scholar 

  122. Grandin, R. et al. Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology 40, 1059–1062 (2012).

    Google Scholar 

  123. Mencin, D. et al. Himalayan strain reservoir inferred from limited afterslip following the Gorkha earthquake. Nat. Geosci. 9, 533–537 (2016).

    Google Scholar 

  124. Gualandi, A. et al. Pre- and post-seismic deformation related to the 2015, Mw 7.8 Gorkha earthquake, Nepal. Tectonophysics 714–715, 90–106 (2017).

    Google Scholar 

  125. Qiu, Q. et al. The mechanism of partial rupture of a locked megathrust: the role of fault morphology. Geology 44, 875–878 (2016).

    Google Scholar 

  126. Pandey, M., Tandukar, R., Avouac, J., Lave, J. & Massot, J. Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys. Res. Lett. 22, 751–754 (1995).

    Google Scholar 

  127. Herman, F. et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J. Geophys. Res. Solid Earth 115, B06407 (2010).

    Google Scholar 

  128. Dal Zilio, L., Ruh, J. & Avouac, J.-P. Structural evolution of orogenic wedges: interplay between erosion and weak décollements. Tectonics 39, e2020TC006210 (2020).

    Google Scholar 

  129. Shen, L. et al. Tectonic underplating versus out-of-sequence thrusting beneath the Lesser Himalaya: Insights from the analogue modeling of the Nepal Himalaya fold-and-thrust belt. J. Asian Earth Sci. 198, 104167 (2020).

    Google Scholar 

  130. Jackson, M. & Bilham, R. Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. J. Geophys. Res. 99, 13–897 (1994).

    Google Scholar 

  131. Alvizuri, C. & Hetényi, G. Source mechanism of a lower crust earthquake beneath the Himalayas and its possible relation to metamorphism. Tectonophysics 769, 128153 (2019).

    Google Scholar 

  132. Schulte-Pelkum, V. et al. Mantle earthquakes in the Himalayan collision zone. Geology 47, 815–819 (2019).

    Google Scholar 

  133. Bollinger, L. et al. Seasonal modulation of seismicity in the Himalaya of Nepal. Geophys. Res. Lett. 34, L08304 (2007).

    Google Scholar 

  134. Lindsey, E. O. et al. Structural control on downdip locking extent of the Himalayan megathrust. J. Geophys. Res. Solid Earth 123, 5265–5278 (2018).

    Google Scholar 

  135. Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. Solid Earth 100, 13045–13064 (1995).

    Google Scholar 

  136. Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

    Google Scholar 

  137. Fan, W. & Shearer, P. M. Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves. Geophys. Res. Lett. 42, 5744–5752 (2015).

    Google Scholar 

  138. Yue, H. et al. Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake. Tectonophysics 714, 44–54 (2017).

    Google Scholar 

  139. Michel, S., Avouac, J.-P., Lapusta, N. & Jiang, J. Pulse-like partial ruptures and high-frequency radiation at creeping-locked transition during megathrust earthquakes. Geophys. Res. Lett. 44, 8345–8351 (2017).

    Google Scholar 

  140. Wang, X., Wei, S. & Wu, W. Double-ramp on the Main Himalayan Thrust revealed by broadband waveform modeling of the 2015 Gorkha earthquake sequence. Earth Planet. Sci. Lett. 473, 83–93 (2017).

    Google Scholar 

  141. Mahadevan, L., Bendick, R. & Liang, H. Why subduction zones are curved. Tectonics 29, TC6002 (2010).

    Google Scholar 

  142. Hetényi, G. et al. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies. Sci. Rep. 6, 33866 (2016).

    Google Scholar 

  143. Geological Survey of India, Dasgupta, S., Narula, P., Acharyya, S. K. & Banerjee, J. Seismotectonic Atlas of India and its Environs (Geological Survey of India, 2000).

  144. Grujic, D. et al. Stress transfer and connectivity between the Bhutan Himalaya and the Shillong Plateau. Tectonophysics 744, 322–332 (2018).

    Google Scholar 

  145. Duncan, C., Masek, J. & Fielding, E. How steep are the Himalaya? Characteristics and implications of along-strike topographic variations. Geology 31, 75–78 (2003).

    Google Scholar 

  146. Armijo, R., Tapponnier, P., Mercier, J. & Han, T.-L. Quaternary extension in southern Tibet: Field observations and tectonic implications. J. Geophys. Res. Solid Earth 91, 13803–13872 (1986).

    Google Scholar 

  147. De, R. & Kayal, J. Seismotectonic model of the Sikkim Himalaya: constraint from microearthquake surveys. Bull. Seismol. Soc. Am. 93, 1395–1400 (2003).

    Google Scholar 

  148. Dasgupta, S., Mukhopadhyay, M. & Nandy, D. Active transverse features in the central portion of the Himalaya. Tectonophysics 136, 255–264 (1987).

    Google Scholar 

  149. Murphy, M. A. et al. Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal. Nat. Geosci. 7, 38–42 (2014).

    Google Scholar 

  150. Diehl, T. et al. Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation. Earth Planet. Sci. Lett. 471, 54–64 (2017).

    Google Scholar 

  151. Kumar, A., Mitra, S. & Suresh, G. Seismotectonics of the eastern Himalayan and Indo-Burman plate boundary systems. Tectonics 34, 2279–2295 (2015).

    Google Scholar 

  152. Vernant, P. et al. Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau. J. Geophys. Res. Solid Earth 119, 6558–6571 (2014).

    Google Scholar 

  153. Barman, P., Ray, J. D., Kumar, A., Chowdhury, J. & Mahanta, K. Estimation of present-day inter-seismic deformation in Kopili fault zone of north-east India using GPS measurements. Geomatics Nat. Hazards Risk 7, 586–599 (2016).

    Google Scholar 

  154. Gahalaut, V. & Kundu, B. Possible influence of subducting ridges on the Himalayan arc and on the ruptures of great and major Himalayan earthquakes. Gondwana Res. 21, 1080–1088 (2012).

    Google Scholar 

  155. Duvall, M. J., Waldron, J. W., Godin, L. & Najman, Y. Active strike-slip faults and an outer frontal thrust in the Himalayan foreland basin. Proc. Natl Acad. Sci. USA 117, 17615–17621 (2020).

    Google Scholar 

  156. Lyon-Caen, H. & Molnar, P. Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalaya and Ganga Basin. Tectonics 4, 513–538 (1985).

    Google Scholar 

  157. Lyon-Caen, H. & Molnar, P. Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J. Geophys. Res. Solid Earth 88, 8171–8191 (1983).

    Google Scholar 

  158. Cattin, R. et al. Gravity anomalies, crustal structure and thermo-mechanical support of the Himalaya of central Nepal. Geophys. J. Int. 147, 381–392 (2001).

    Google Scholar 

  159. Hetényi, G., Cattin, R., Vergne, J. & Nábeˇlek, J. L. The effective elastic thickness of the India Plate from receiver function imaging, gravity anomalies and thermomechanical modelling. Geophys. J. Int. 167, 1106–1118 (2006).

    Google Scholar 

  160. Das, D., Mehra, G., Rao, K. G. C., Roy, A. L. & Narayana, M. S. Bouguer, free-air and magnetic anomalies over north-western Himalayas. Misc. Publ. Geol. Surv. India 41, 141–148 (1979).

    Google Scholar 

  161. Banerjee, P. Gravity measurements and terrain corrections using a digital terrain model in the NW Himalaya. Comput. Geosci. 24, 1009–1020 (1998).

    Google Scholar 

  162. Martelet, G., Sailhac, P., Moreau, F. & Diament, M. Characterization of geological boundaries using 1-D wavelet transform on gravity data: theory and application to the Himalayas. Geophysics 66, 1116–1129 (2001).

    Google Scholar 

  163. Tiwari, V., Rao, M. V., Mishra, D. & Singh, B. Crustal structure across Sikkim, NE Himalaya from new gravity and magnetic data. Earth Planet. Sci. Lett. 247, 61–69 (2006).

    Google Scholar 

  164. Berthet, T. et al. Lateral uniformity of India Plate strength over central and eastern Nepal. Geophys. J. Int. 195, 1481–1493 (2013).

    Google Scholar 

  165. Hammer, P. et al. Flexure of the India plate underneath the Bhutan Himalaya. Geophys. Res. Lett. 40, 4225–4230 (2013).

    Google Scholar 

  166. Hubbard, J., Shaw, J. H. & Klinger, Y. Structural setting of the 2008 Mw 7.9 Wenchuan, China, earthquake. Bull. Seismol. Soc. Am. 100, 2713–2735 (2010).

    Google Scholar 

  167. Van Hinsbergen, D. J. et al. Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics 30, TC5003 (2011).

    Google Scholar 

  168. Zuza, A. V., Cheng, X. & Yin, A. Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan–Nan Shan thrust belt. Geosphere 12, 501–532 (2016).

    Google Scholar 

  169. Meng, J. et al. Reduced convergence within the Tibetan Plateau by 26 Ma? Geophys. Res. Lett. 44, 6624–6632 (2017).

    Google Scholar 

  170. DeCelles, P. G., Robinson, D. M. & Zandt, G. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics 21, 12-1–12-25 (2002).

    Google Scholar 

  171. Robinson, D. M., DeCelles, P. G. & Copeland, P. Tectonic evolution of the Himalayan thrust belt in western Nepal: Implications for channel flow models. Geol. Soc. Am. Bull. 118, 865–885 (2006).

    Google Scholar 

  172. McQuarrie, N. et al. Preliminary stratigraphic and structural architecture of Bhutan: implications for the along strike architecture of the Himalayan system. Earth Planet. Sci. Lett. 272, 105–117 (2008).

    Google Scholar 

  173. Long, S., McQuarrie, N., Tobgay, T. & Grujic, D. Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan. Bulletin 123, 1427–1447 (2011).

    Google Scholar 

  174. Webb, A. A. G. Preliminary balanced palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India). Geosphere 9, 572–587 (2013).

    Google Scholar 

  175. Ding, L. et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45, 215–218 (2017).

    Google Scholar 

  176. Xu, Q. et al. Stable isotopes reveal southward growth of the Himalayan-Tibetan Plateau since the Paleocene. Gondwana Res. 54, 50–61 (2018).

    Google Scholar 

  177. Gébelin, A. et al. The miocene elevation of Mount Everest. Geology 41, 799–802 (2013).

    Google Scholar 

  178. Clift, P. D. et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 1, 875–880 (2008).

    Google Scholar 

  179. Godard, V. et al. Dominance of tectonics over climate in Himalayan denudation. Geology 42, 243–246 (2014).

    Google Scholar 

  180. Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet. Sci. Lett. 220, 379–389 (2004).

    Google Scholar 

  181. DeCelles, P. G. et al. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Geol. Soc. Am. Bull. 110, 2–21 (1998).

    Google Scholar 

  182. Bollinger, L., Henry, P. & Avouac, J. Mountain building in the Nepal Himalaya: thermal and kinematic model. Earth Planet. Sci. Lett. 244, 58–71 (2006).

    Google Scholar 

  183. Khanal, S. & Robinson, D. M. Upper crustal shortening and forward modeling of the Himalayan thrust belt along the Budhi-Gandaki River, central Nepal. Int. J. Earth Sci. 102, 1871–1891 (2013).

    Google Scholar 

  184. Srivastava, P. & Mitra, G. Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt. Tectonics 13, 89–109 (1994).

    Google Scholar 

  185. Fan, S. & Murphy, M. A. Three-dimensional strain accumulation and partitioning in an arcuate orogenic wedge: an example from the Himalaya. Bulletin 133, 3–18 (2021).

    Google Scholar 

  186. Shimizu, K., Yagi, Y., Okuwaki, R. & Fukahata, Y. Construction of fault geometry by finite-fault inversion of teleseismic data. Geophys. J. Int. 224, 1003–1014 (2021).

    Google Scholar 

  187. Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  188. Langer, L., Ragon, T., Sladen, A. & Tromp, J. Impact of topography on earthquake static slip estimates. Tectonophysics 791, 228566 (2020).

    Google Scholar 

  189. Wang, K. & Fialko, Y. Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake. J. Geophys. Res. Solid Earth 123, 761–779 (2018).

    Google Scholar 

  190. Ingleby, T., Wright, T., Hooper, A., Craig, T. & Elliott, J. Constraints on the geometry and frictional properties of the Main Himalayan Thrust using coseismic, postseismic, and interseismic deformation in Nepal. J. Geophys. Res. Solid Earth 125, e2019JB019201 (2020).

    Google Scholar 

  191. Drukpa, D., Gautier, S., Cattin, R., Namgay, K. & Le Moigne, N. Impact of near-surface fault geometry on secular slip rate assessment derived from uplifted river terraces: implications for convergence accommodation across the frontal thrust in southern Central Bhutan. Geophys. J. Int. 212, 1315–1330 (2018).

    Google Scholar 

  192. Meade, B. J. The signature of an unbalanced earthquake cycle in Himalayan topography? Geology 38, 987–990 (2010).

    Google Scholar 

  193. Yue, L.-F., Suppe, J. & Hung, J.-H. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw=7.6). J. Struct. Geol. 27, 2058–2083 (2005).

    Google Scholar 

  194. Tsukahara, K. & Takada, Y. Aseismic fold growth in southwestern Taiwan detected by InSAR and GNSS. Earth Planets Space 70, 52 (2018).

    Google Scholar 

  195. Suppe, J. Geometry and kinematics of fault-bend folding. Am. J. Sci. 283, 684–721 (1983).

    Google Scholar 

  196. Rizza, M. et al. Post earthquake aggradation processes to hide surface ruptures in thrust systems: the M8.3, 1934, Bihar-Nepal earthquake ruptures at Charnath Khola (Eastern Nepal). J. Geophys. Res. Solid Earth 124, 9182–9207 (2019).

    Google Scholar 

  197. Rajendran, C., John, B., Rajendran, K. & Sanwal, J. Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India. J. Seismol. 20, 733–745 (2016).

    Google Scholar 

  198. Kong, Q. et al. Machine learning in seismology: turning data into insights. Seismol. Res. Lett. 90, 3–14 (2019).

    Google Scholar 

  199. Elliott, J. R., Walters, R. J. & Wright, T. J. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 7, 13844 (2016).

    Google Scholar 

  200. Stevens, V. L., Shrestha, S. N. & Maharjan, D. K. Probabilistic seismic hazard assessment of Nepal. Bulletin of the Seismological Society of America 108, 3488–3510 (2018).

    Google Scholar 

  201. Stevens, V. L., De Risi, R., Le Roux-Mallouf, R., Drukpa, D. & Hetényi, G. Seismic hazard and risk in Bhutan. Natural Hazards 104, 2339–2367 (2020).

    Google Scholar 

  202. Chamoli, B. P. et al. A prototype earthquake early warning system for northern India. J. Earthq. Eng. https://doi.org/10.1080/13632469.2019.1625828 (2019).

    Article  Google Scholar 

  203. Mittal, H., Wu, Y.-M., Sharma, M. L., Yang, B. M. & Gupta, S. Testing the performance of earthquake early warning system in northern India. Acta Geophys. 67, 59–75 (2019).

    Google Scholar 

  204. Kumar, A. et al. in 15th Symposium on Earthquake Engineering 231–238 (2014).

  205. Subedi, S., Hetényi, G., Denton, P. & Sauron, A. Seismology at school in Nepal: a program for educational and citizen seismology through a low-cost seismic network. Front. Earth Sci. 8, 73 (2020).

    Google Scholar 

  206. Subedi, S., Hetényi, G. & Shackleton, R. Impact of an educational program on earthquake awareness and preparedness in Nepal. Geosci. Commun. 3, 279–290 (2020).

    Google Scholar 

  207. Webb, A. A. G. et al. The Himalaya in 3D: slab dynamics controlled mountain building and monsoon intensification. Lithosphere 9, 637–651 (2017).

    Google Scholar 

  208. Kreemer, C., Blewitt, G. & Klein, E. C. A geodetic plate motion and global strain rate model. Geochem. Geophys. Geosyst. 15, 3849–3889 (2014).

    Google Scholar 

  209. Zheng, G. et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J. Geophys. Res. Solid Earth 122, 9290–9312 (2017).

    Google Scholar 

  210. Hetényi, G. et al. Joint approach combining damage and paleoseismology observations constrains the 1714 AD Bhutan earthquake at magnitude 8±0.5. Geophys. Res. Lett. 43, 10,695–10,702 (2016).

    Google Scholar 

  211. Ekström, G., Nettles, M. & Dziewon´ski, A. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9 (2012).

    Google Scholar 

  212. Monsalve, G. et al. Seismicity and one-dimensional velocity structure of the Himalayan collision zone: Earthquakes in the crust and upper mantle. J. Geophys. Res. Solid Earth 111, B10301 (2006).

    Google Scholar 

  213. Sreejith, K. M. et al. Coseismic and early postseismic deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, earthquake from InSAR and GPS measurements. Geophysical Research Letters, 43, 3160–3168 (2016).

    Google Scholar 

Download references

Acknowledgements

L.D.Z. was supported by the Swiss National Science Foundation (SNSF) (grants P2EZP2_184307 and P400P2_199295) and the Cecil and Sally Drinkward fellowship at Caltech. G.H. acknowledges the SNSF for funding the OROG3NY project (grants PP00P2_157627 and PP00P2_187199). J.H. is supported by the Earth Observatory of Singapore (EOS), the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative. L.B. is supported by the French Alternative Energies and Atomic Energy Commission (CEA). This work comprises EOS contribution 344. We thank R. Jolivet, T. Ragon, T. Gerya, S. Barbot, F. Capitanio, J. Ruh, N. Lapusta, M.-A. Meier, S. Michel and A. Gualandi for constructive comments and discussions. We thank J.-P. Avouac for his help in preparing the manuscript. We are grateful to T. Ragon for providing us with data of the Gorkha event, S. Kufner for sharing a raw figure on the lithospheric structure of the Hindu Kush and to A. Webb for providing us with a geological map of the Himalayan arc.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, writing, figure preparation and editing of this Review.

Corresponding author

Correspondence to Luca Dal Zilio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Orogen

A belt of the Earth’s crust involved in the formation of mountains, owing to tectonic plate convergence.

Seismic cycle

Repeating process during which mechanical stress slowly builds up on a fault over a long period (interseismic period, years to centuries), is rapidly released in an earthquake (coseismic period, seconds to tens of seconds) and experiences a period of stress adjustment following coseismic slip (post-seismic relaxation, weeks to months).

Surface denudation

Loss of landscape mass leading to a reduction in elevation and relief of a landscape, driven by erosion and chemical weathering.

Footwall

The body of rock below a non-vertical fault.

Hanging wall

The body of rock above a non-vertical fault.

Blind earthquakes

Earthquakes where fault slip does not reach the Earth’s surface and, hence, do not produce a fault scarp.

Accretion

Process by which material from the lower (subducting) plate is removed and added to the upper plate by tectonic processes, such as imbricate thrusting and/or folding and thrusting.

Interseismic locking

A mechanical term referring to the response of a fault to applied stress during the interseismic period. A fault that is frictionally locked does not slip, despite the application of stress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal Zilio, L., Hetényi, G., Hubbard, J. et al. Building the Himalaya from tectonic to earthquake scales. Nat Rev Earth Environ 2, 251–268 (2021). https://doi.org/10.1038/s43017-021-00143-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00143-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing