Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Atom probe tomography

Abstract

Atom probe tomography (APT) provides three-dimensional compositional mapping with sub-nanometre resolution. The sensitivity of APT is in the range of parts per million for all elements, including light elements such as hydrogen, carbon or lithium, enabling unique insights into the composition of performance-enhancing or lifetime-limiting microstructural features and making APT ideally suited to complement electron-based or X-ray-based microscopies and spectroscopies. Here, we provide an introductory overview of APT ranging from its inception as an evolution of field ion microscopy to the most recent developments in specimen preparation, including for nanomaterials. We touch on data reconstruction, analysis and various applications, including in the geosciences and the burgeoning biological sciences. We review the underpinnings of APT performance and discuss both strengths and limitations of APT, including how the community can improve on current shortcomings. Finally, we look forwards to true atomic-scale tomography with the ability to measure the isotopic identity and spatial coordinates of every atom in an ever wider range of materials through new specimen preparation routes, novel laser pulsing and detector technologies, and full interoperability with complementary microscopy techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microstructural features with their typical size and some analytical techniques used to analyse them.
Fig. 2: Schematics of the atom probe instrumentation and the field evaporation process.
Fig. 3: FIB lift-out specimen preparation.
Fig. 4: Specimen preparation techniques for non-bulk samples.
Fig. 5: Ranged mass spectrum and reconstruction protocol.
Fig. 6: Examples of reconstruction and data visualization and analysis from engineering alloys.
Fig. 7: Spatial resolution of APT in the analysis of precipitates.

Similar content being viewed by others

References

  1. De Geuser, F. & Gault, B. Metrology of small particles and solute clusters by atom probe tomography. Acta Mater. 188, 406–415 (2020).

    Article  ADS  Google Scholar 

  2. Müller, E. W., Panitz, J. A., McLane, S. B. & Müller, E. W. Atom-probe field ion microscope. Rev. Sci. Instrum. 39, 83–86 (1968).

    Article  ADS  Google Scholar 

  3. Muller, E. W. Oberflachenwanderung von Wolfram auf dem eigenen Kristallgitter [German]. Z. Fur Phys. 126, 642–665 (1949).

    Article  ADS  Google Scholar 

  4. Müller, E. W. & Bahadur, K. Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys. Rev. 102, 624–631 (1956).

    Article  ADS  Google Scholar 

  5. Müller, E. W. Experiments of the theory of electron emission under the influence of high field strength. Phys. Z. 37, 838–842 (1936).

    Google Scholar 

  6. Durand, E. Electrostatique Et Magnétostatique [French] (Masson & Cie, Libraires De L’académie De Médecine, 1953).

  7. Smith, R. & Walls, J. M. Ion trajectories in field-ion microscope. J. Phys. D-Applied Phys. 11, 409–419 (1978).

    Article  ADS  Google Scholar 

  8. Müller, E. W. Atoms visualized. Sci. Am. 196, 113–122 (1957).

    Article  Google Scholar 

  9. Müller, E. W. Atom-probe field ion microscope. Naturwissenschaften 57, 222–230 (1970).

    Article  ADS  Google Scholar 

  10. Panitz, J. A. The 10 cm atom probe. Rev. Sci. Instrum. 44, 1034 (1973).

    Article  ADS  Google Scholar 

  11. Waugh, A. R., Boyes, E. D. & Southon, M. J. Field-desorption microscopy and the atom probe. Nature 253, 342–343 (1975).

    Article  ADS  Google Scholar 

  12. Cerezo, A., Godfrey, T. J. & Smith, G. D. W. Application of a position-sensitive detector to atom probe microanalysis. Rev. Sci. Instrum. 59, 862 (1988).

    Article  ADS  Google Scholar 

  13. Blavette, D., Bostel, A., Sarrau, J. M., Deconihout, B. & Menand, A. An atom probe for three-dimensional tomography. Nature 363, 432–435 (1993).

    Article  ADS  Google Scholar 

  14. Kelly, T. F. & Miller, M. K. Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 31101 (2007). This article is a thorough introductory review article on APT, with an emphasis on its historical developments.

    Article  Google Scholar 

  15. Miller, M. K. The development of atom probe field-ion microscopy. Mater. Charact. 44, 11–27 (2000).

    Article  Google Scholar 

  16. Cadel, E., Fraczkiewicz, A. & Blavette, D. Atomic scale observation of Cottrell atmospheres in B-doped FeAl (B2) by 3D atom probe field ion microscopy. Mater. Sci. Engin. A 309, 32–37 (2001).

    Article  Google Scholar 

  17. Wilde, J., Cerezo, A. & Smith, G. D. W. Three-dimensional atomic-scale mapping of a Cottrell atmosphere around a dislocation in iron. Scr. Mater. 43, 39–48 (2000).

    Article  Google Scholar 

  18. Herbig, M. et al. Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112, 126103 (2014).

    Article  ADS  Google Scholar 

  19. Liebscher, C. H. et al. Strain-induced asymmetric line segregation at faceted Si grain boundaries. Phys. Rev. Lett. 121, 15702 (2018).

    Article  ADS  Google Scholar 

  20. Gault, B. et al. Interfaces and defect composition at the near-atomic scale through atom probe tomography investigations. J. Mater. Res. 33, 4018–4030 (2018).

    Article  ADS  Google Scholar 

  21. Ringer, S. P. & Apperley, M. H. Networking strategies of the microscopy community for improved utilisation of advanced instruments: (1) The Australian Microscopy and Microanalysis Research Facility (AMMRF). Comptes Rendus Phys. 15, 269–275 (2014).

    Article  ADS  Google Scholar 

  22. Larson, D. J. Local Electrode Atom Probe Tomography: A User’s Guide (Springer, 2013).

  23. Lefebvre-Ulrikson, W., Vurpillot, F. & Sauvage, X. Atom Probe Tomography: Put Theory into Practice (Academic, 2016).

  24. Kelly, T. F. et al. First data from a commercial local electrode atom probe (LEAP). Microsc. Microanal. 10, 373–383 (2004).

    Article  ADS  Google Scholar 

  25. Nishikawa, O., Ohtani, Y., Maeda, K., Watanabe, M. & Tanaka, K. Development of the scanning atom probe and atomic level analysis. Mater. Charact. 44, 29–57 (2000).

    Article  Google Scholar 

  26. Grennan-Heaven, N., Cerezo, A., Godfrey, T. J. J. & Smith, G. D. W. Design of a scanning atom probe with improved mass resolution using post deceleration. Ultramicroscopy 107, 59–60 (2006).

    Google Scholar 

  27. Kelly, T. F., Camus, P. P., Larson, D. J., Holzman, L. M. & Bajikar, S. S. On the many advantages of local-electrode atom probes. Ultramicroscopy 62, 29–42 (1996).

    Article  Google Scholar 

  28. Ravelo, B. & Vurpillot, F. Analysis of excitation pulsed signal propagation for atom probe tomography system. Prog. Electromagn. Res. Lett. 47, 61–70 (2014).

    Article  Google Scholar 

  29. Kellogg, G. L. & Tsong, T. T. Pulsed-laser atom-probe field-ion microscopy. J. Appl. Phys. 51, 1184 (1980).

    Article  ADS  Google Scholar 

  30. Cerezo, A., Grovenor, C. R. M. & Smith, G. D. W. Pulsed laser atom probe analysis of semiconductor materials. J. Microscopy 141, 155–170 (1986).

    Article  Google Scholar 

  31. Gault, B. et al. Design of a femtosecond laser assisted tomographic atom probe. Rev. Sci. Instrum. 77, 43705 (2006).

    Article  Google Scholar 

  32. Bunton, J. H., Olson, J. D., Lenz, D. R. & Kelly, T. F. Advances in pulsed-laser atom probe: instrument and specimen design for optimum performance. Microsc. Microanal. 13, 418–427 (2007).

    Article  ADS  Google Scholar 

  33. Schlesiger, R. et al. Design of a laser-assisted tomographic atom probe at Munster University. Rev. Sci. Instrum. 81, 43703 (2010).

    Article  Google Scholar 

  34. Houard, J., Vella, A., Vurpillot, F. & Deconihout, B. Conditions to cancel the laser polarization dependence of a subwavelength tip. Appl. Phys. Lett. 94, 121905 (2009).

    Article  ADS  Google Scholar 

  35. Koelling, S. et al. In-situ observation of non-hemispherical tip shape formation during laser-assisted atom probe tomography. J. Appl. Phys. 109, 104909 (2011).

    Article  ADS  Google Scholar 

  36. Poschenrieder, W. P. Multiple-focusing time of flight mass spectrometers. Part I. TOFMS with equal momentum acceleration. Int. J. Mass. Spectrom. Ion. Phys. 6, 413–426 (1971).

    Article  ADS  Google Scholar 

  37. Bostel, A. & Yavor, M. Patent Application Publication Pub. No.: US 2010/0223698 A1 (2010).

  38. Mamyrin, B. A., Karataev, V. I., Shmikk, D. V. & Zagulin, V. A. Mass-reflectron a new nonmagnetic time-of-flight high-resolution mass-spectrometer. Zhurnal Eksp. I Teor. Fiz. 64, 82–89 (1973).

    Google Scholar 

  39. Bemont, E. et al. Effects of incidence angles of ions on the mass resolution of an energy compensated 3D atom probe. Ultramicroscopy 95, 231–238 (2003).

    Article  Google Scholar 

  40. Panayi, P. A reflectron for use in a three-dimensional atom probe. Great Britain Patent No. GB2426120A (2006).

  41. Clifton, P., Gribb, T., Gerstl, S., Ulfig, R. M. & Larson, D. J. Performances advantages of a modern, ultra-high mass resolution atom probe. Microsc. Microanal. 14, 454–455 (2008).

    Article  ADS  Google Scholar 

  42. Deconihout, B., Gerard, P., Bouet, M. & Bostel, A. Improvement of the detection efficiency of channel plate electron multiplier for atom probe application. Appl. Surf. Sci. 94–5, 422–427 (1996).

    Article  ADS  Google Scholar 

  43. Jagutzki, O. et al. Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans. Nucl. Sci. 49, 2477–2483 (2002).

    Article  ADS  Google Scholar 

  44. Da Costa, G., Vurpillot, F., Bostel, A., Bouet, M. & Deconihout, B. Design of a delay-line position-sensitive detector with improved performance. Rev. Sci. Instrum. 76, 13304 (2005).

    Article  Google Scholar 

  45. Brandon, D. G. On field evaporation. Philos. Mag. 14, 803–820 (1966).

    Article  ADS  Google Scholar 

  46. Waugh, A. R., Boyes, E. D. & Southon, M. J. Investigations of field evaporation with field desorption microscope. Surf. Sci. 61, 109–142 (1976).

    Article  ADS  Google Scholar 

  47. Wada, M. On the thermally activated field evaporation of surface atoms. Surf. Sci. 145, 451–465 (1984).

    Article  ADS  Google Scholar 

  48. Menand, A. & Kingham, D. R. Evidence for the quantum mechanical tunnelling of boron ions. J. Phys. C Solid. State Phys. 18, 4539–4547 (1985).

    Article  ADS  Google Scholar 

  49. Kingham, D. R. The post-ionization of field evaporated ions: a theoretical explanation of multiple charge states. Surf. Sci. 116, 273–301 (1982).

    Article  ADS  Google Scholar 

  50. Kellogg, G. L. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J. Appl. Phys. 52, 5320 (1981).

    Article  ADS  Google Scholar 

  51. Kellogg, G. L. Measurement of the charge state distribution of field evaporated ions: evidence for post-ionization. Surf. Sci. 120, 319–333 (1982).

    Article  ADS  Google Scholar 

  52. Marquis, E. A. & Gault, B. Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J. Appl. Phys. 104, 84914 (2008).

    Article  Google Scholar 

  53. Shariq, A. et al. Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy 109, 472–479 (2009).

    Article  Google Scholar 

  54. Katnagallu, S. et al. Impact of local electrostatic field rearrangement on field ionization. J. Phys. D Appl. Phys. 51, 105601 (2018).

    Article  ADS  Google Scholar 

  55. Zhu, M. et al. Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding. Adv. Mater. 30, 1706735 (2018).

    Article  Google Scholar 

  56. Yu, Y., Cagnoni, M., Cojocaru-Mirédin, O. & Wuttig, M. Chalcogenide thermoelectrics empowered by an unconventional bonding mechanism. Adv. Funct. Mater. 30, 1904862 (2020).

    Article  Google Scholar 

  57. Yao, L., Gault, B., Cairney, J. M. & Ringer, S. P. On the multiplicity of field evaporation events in atom probe: a new dimension to the analysis of mass spectra. Philos. Mag. Lett. 90, 121–129 (2010).

    Article  ADS  Google Scholar 

  58. Saxey, D. W. Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473–479 (2011).

    Article  Google Scholar 

  59. Peng, Z. et al. Unraveling the metastability of Cn2+ (n = 2–4) clusters. J. Phys. Chem. Lett. 10, 581–588 (2019).

    Article  Google Scholar 

  60. Sha, W. et al. Some aspects of atom-probe analysis of Fe–C and Fe–N systems. Surf. Sci. 266, 416–423 (1992).

    Article  ADS  Google Scholar 

  61. Silaeva, E. P. et al. Do dielectric nanostructures turn metallic in high-electric DC fields? Nano Lett. 14, 6066–6072 (2014).

    Article  ADS  Google Scholar 

  62. Karahka, M. & Kreuzer, H. J. Field evaporation of oxides: a theoretical study. Ultramicroscopy 132, 54–59 (2013).

    Article  Google Scholar 

  63. Kellogg, G. Field evaporation of silicon and field desorption of hydrogen from silicon surfaces. Phys. Rev. B 28, 1957–1964 (1983).

    Article  ADS  Google Scholar 

  64. Müller, M., Saxey, D. W., Smith, G. D. W. & Gault, B. Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487–492 (2011).

    Article  Google Scholar 

  65. Zanuttini, D. et al. Simulation of field-induced molecular dissociation in atom-probe tomography: identification of a neutral emission channel. Phys. Rev. A 95, 61401 (2017).

    Article  ADS  Google Scholar 

  66. Miller, M. K. An atom probe study of the anomalous field evaporation of alloys containing silicon. J. Vac. Sci. Technol. 19, 57 (1981).

    Article  ADS  Google Scholar 

  67. Yao, L., Cairney, J. M., Zhu, C. & Ringer, S. P. Optimisation of specimen temperature and pulse fraction in atom probe microscopy experiments on a microalloyed steel. Ultramicroscopy 111, 648–651 (2011).

    Article  Google Scholar 

  68. Mancini, L. et al. Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J. Phys. Chem. C. 118, 24136–24151 (2014).

    Article  Google Scholar 

  69. Kolli, R. P. & Seidman, D. N. Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe–Cu steel. Microsc. Microanal. 13, 272–284 (2007).

    Article  ADS  Google Scholar 

  70. Tang, F., Gault, B., Ringer, S. P. & Cairney, J. M. Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti–Si–N films. Ultramicroscopy 110, 836–843 (2010).

    Article  Google Scholar 

  71. Huang, M., Cerezo, A., Clifton, P. H. & Smith, G. D. W. Measurements of field enhancement introduced by a local electrode. Ultramicroscopy 89, 163–167 (2001).

    Article  Google Scholar 

  72. Loi, S. T., Gault, B., Ringer, S. P., Larson, D. J. & Geiser, B. P. Electrostatic simulations of a local electrode atom probe: the dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107–113 (2013).

    Article  Google Scholar 

  73. Miller, M. K. & Smith, G. D. W. Atom Probe Microanalysis: Principles and Applications to Materials Problems (Materials Research Society, 1989).

  74. Melmed, A. J. The art and science and other aspects of making sharp tips. J. Vac. Sci. Technol. B 9, 601–608 (1991).

    Article  Google Scholar 

  75. Papazian, J. M. The preparation of field-ion-microscope specimens containing grain boundaries. J. Microsc. 94, 63–67 (1971).

    Article  Google Scholar 

  76. Nordén, H. & Bowkett, K. M. Electron microscope holders for viewing thin wire specimens and field-ion microscope tips. J. Sci. Instrum. 44, 238–240 (1967).

    Article  ADS  Google Scholar 

  77. Waugh, A. R., Payne, S., Worrall, G. M. & Smith, G. D. W. In-situ ion milling of field-ion specimens using a liquid-metal ion-source. J. Phys. 45, 207–209 (1984).

    Google Scholar 

  78. Thompson, K. et al. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131–139 (2007).

    Article  Google Scholar 

  79. Thompson, K., Larson, D. J. & Ulfig, R. M. Pre-sharpened and flat-top microtip coupons: a quantitative comparison for atom-probe analysis studies. Microsc. Microanal. 11, 882–883 (2005).

    Article  Google Scholar 

  80. Estivill, R., Audoit, G., Barnes, J.-P., Grenier, A. & Blavette, D. Preparation and analysis of atom probe tips by xenon focused ion beam milling. Microsc. Microanal. 22, 576–582 (2016).

    Article  ADS  Google Scholar 

  81. Eder, K., Bhatia, V., Van Leer, B. & Cairney, J. M. Using a plasma fib equipped with Xe, N2, O2 and Ar for atom probe sample preparation—ion implantation and success rates. Microsc. Microanal. 25, 316–317 (2019).

    Article  Google Scholar 

  82. Halpin, J. E. et al. An in-situ approach for preparing atom probe tomography specimens by xenon plasma-focussed ion beam. Ultramicroscopy 202, 121–127 (2019).

    Article  Google Scholar 

  83. Miller, M. K., Russell, K. F. & Thompson, G. B. Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102, 287–298 (2005).

    Article  Google Scholar 

  84. Prosa, T. J. & Larson, D. J. Modern focused-ion-beam-based site-specific specimen preparation for atom probe tomography. Microsc. Microanal. 23, 194–209 (2017). This article reviews methods for specimen preparation primarily using the FIB.

    Article  ADS  Google Scholar 

  85. Makineni, S. K. et al. Correlative microscopy — novel methods and their applications to explore 3D chemistry and structure of nanoscale lattice defects: a case study in superalloys. JOM 70, 1736–1743 (2018).

    Article  Google Scholar 

  86. Herbig, M. Spatially correlated electron microscopy and atom probe tomography: current possibilities and future perspectives. Scr. Mater. 148, 98–105 (2018).

    Article  Google Scholar 

  87. Felfer, P. J., Alam, T., Ringer, S. P. & Cairney, J. M. A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc. Res. Tech. 75, 484–491 (2012).

    Article  Google Scholar 

  88. Herbig, M., Choi, P. & Raabe, D. Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153, 32–39 (2015).

    Article  Google Scholar 

  89. Felfer, P. et al. New approaches to nanoparticle sample fabrication for atom probe tomography. Ultramicroscopy 159, 413–419 (2015).

    Article  Google Scholar 

  90. Lovall, D., Buss, M., Andres, R. & Reifenberger, R. Resolving the atomic structure of supported nanometer-size Au clusters. Phys. Rev. B Condens. Matter Mater. Phys. 58, 15889–15896 (1998).

    Article  ADS  Google Scholar 

  91. Li, T. et al. Atomic imaging of carbon-supported Pt, Pt/Co, and Ir@Pt nanocatalysts by atom-probe tomography. ACS Catal. 4, 695–702 (2014).

    Article  Google Scholar 

  92. Tedsree, K. et al. Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core-shell nanocatalyst. Nat. Nanotechnol. 6, 302–307 (2011).

    Article  ADS  Google Scholar 

  93. Yu, K. M. K. et al. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat. Commun. 3, 1230 (2012).

    Article  ADS  Google Scholar 

  94. Eley, C. et al. Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. Angew. Chem. Int. Ed. 126, 7972–7976 (2014).

    Article  Google Scholar 

  95. Raghuwanshi, M., Cojocaru-Mirédin, O. & Wuttig, M. Investigating bond rupture in resonantly bonded solids by field evaporation of carbon nanotubes. Nano Lett. 20, 116–121 (2020).

    Article  ADS  Google Scholar 

  96. Ene, C. B., Schmitz, G., Kirchheim, R. & Hütten, A. Stability and thermal reaction of GMR NiFe/Cu thin films. Acta Mater. 53, 3383–3393 (2005).

    Article  ADS  Google Scholar 

  97. Stender, P., Balogh, Z. & Schmitz, G. Triple line diffusion in nanocrystalline Fe/Cr and its impact on thermal stability. Ultramicroscopy 111, 524–529 (2011).

    Article  Google Scholar 

  98. Prosa, T., Kostrna Keeney, S. & Kelly, T. F. Local electrode atom probe analysis of poly(3-alkylthiophene)s. J. Microsc. 237, 155–167 (2010).

    Article  MathSciNet  Google Scholar 

  99. Gault, B. et al. Atom probe microscopy of self-assembled monolayers: preliminary results. Langmuir 26, 5291–5294 (2010).

    Article  Google Scholar 

  100. Stoffers, A., Oberdorfer, C. & Schmitz, G. Controlled field evaporation of fluorinated self-assembled monolayers. Langmuir 28, 56–59 (2012).

    Article  Google Scholar 

  101. Devaraj, A. et al. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat. Commun. 6, 8014 (2015).

    Article  ADS  Google Scholar 

  102. Diercks, D., Gorman, B. P., Cheung, C. L. & Wang, G. Techniques for consecutive TEM and atom probe tomography analysis of nanowires. Microsc. Microanal. 15, 254–255 (2009).

    Article  ADS  Google Scholar 

  103. Xiang, Y. et al. Long-chain terminal alcohols through catalytic CO hydrogenation. J. Am. Chem. Soc. 135, 7114–7117 (2013).

    Article  Google Scholar 

  104. Perea, D. E., Wijaya, E., Lensch-Falk, J. L., Hemesath, E. R. & Lauhon, L. J. Tomographic analysis of dilute impurities in semiconductor nanostructures. J. Solid. State Chem. 181, 1642–1649 (2008).

    Article  ADS  Google Scholar 

  105. Du, S. et al. Full tip imaging in atom probe tomography. Ultramicroscopy 124, 96–101 (2013).

    Article  Google Scholar 

  106. Yang, Q. et al. Atom probe tomography of Au–Cu bimetallic nanoparticles synthesized by inert gas condensation. J. Phys. Chem. C. 123, 26481–26489 (2019).

    Article  Google Scholar 

  107. Yang, Q. et al. A combined approach for deposition and characterization of atomically engineered catalyst nanoparticles. Catal. Struct. React. 1, 125–131 (2015).

    Google Scholar 

  108. Barroo, C., Akey, A. J. & Bell, D. C. Aggregated nanoparticles: sample preparation and analysis by atom probe tomography. Ultramicroscopy 218, 113082 (2020).

    Article  Google Scholar 

  109. Felfer, P., Benndorf, P., Masters, A., Maschmeyer, T. & Cairney, J. M. Revealing the distribution of the atoms within individual bimetallic catalyst nanoparticles. Angew. Chem. Int. Ed. 53, 11190–11193 (2014).

    Article  Google Scholar 

  110. Raine, E. et al. Synthesis and characterization of platinum nanoparticle catalysts capped with isolated zinc species in SBA-15 cChannels: the wall effect. ACS Appl. Nano Mater. 1, 6603–6612 (2018).

    Article  Google Scholar 

  111. Yu, B. et al. Enhanced propylene oxide selectivity for gas phase direct propylene epoxidation by lattice expansion of silver atoms on nickel nanoparticles. Appl. Catal. B Env. 243, 304–312 (2019).

    Article  Google Scholar 

  112. Jiang, K. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019).

    Article  ADS  Google Scholar 

  113. Wang, Z. et al. Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks. Nat. Commun. 11, 225 (2020).

    Article  ADS  Google Scholar 

  114. Wilde, P. et al. Insights into the formation, chemical stability, and activity of transient NiyP@NiOx core-shell heterostructures for the oxygen evolution reaction. ACS Appl. Energy Mater. 3, 2304–2309 (2020).

    Article  Google Scholar 

  115. Larson, D. J. et al. Encapsulation method for atom probe tomography analysis of nanoparticles. Ultramicroscopy 159, 420–426 (2015).

    Article  Google Scholar 

  116. Kim, S.-H. et al. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT). Ultramicroscopy 190, 30–38 (2018).

    Article  Google Scholar 

  117. Kim, S.-H. et al. Direct imaging of dopant and impurity distributions in 2D MoS2. Adv. Mater. 32, 1907235 (2020).

    Article  Google Scholar 

  118. Lim, J. et al. Atomic-scale mapping of impurities in partially reduced hollow TiO2 nanowires. Angew. Chem. Int. Ed. 59, 5651–5655 (2020).

    Article  Google Scholar 

  119. Perea, D. E., Gerstl, S. S. A., Chin, J., Hirschi, B. & Evans, J. E. An environmental transfer hub for multimodal atom probe tomography. Adv. Struct. Chem. Imaging 3, 12 (2017).

    Article  Google Scholar 

  120. Chen, Y.-S. et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel. Science 355, 1196–1199 (2017).

    Article  ADS  Google Scholar 

  121. Stephenson, L. T. et al. The Laplace project: an integrated suite for correlative atom probe tomography and electron microscopy under cryogenic and UHV conditions. PLoS ONE 13, e0209211 (2018).

    Article  Google Scholar 

  122. Chen, Y.-S. et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 367, 171–175 (2020).

    Article  ADS  Google Scholar 

  123. Breen, A. J. et al. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel. Acta Mater. 188, 108–120 (2020).

    Article  ADS  Google Scholar 

  124. Schwarz, T. M. et al. Field evaporation and atom probe tomography of pure water tips. Sci. Rep. 10, 20271 (2020). This article is a first thorough report on the analysis of thick layers of ice, liquid-metal interfaces and solutions.

    Article  Google Scholar 

  125. El-Zoka, A. A. et al. Enabling near-atomic-scale analysis of frozen water. Sci. Adv. 6, eabd6324 (2020).

    Article  ADS  Google Scholar 

  126. Perea, D. E. et al. Tomographic mapping of the nanoscale water-filled pore structure in corroded borosilicate glass. npj Mater. Degrad. 4, 1–7 (2020).

    Article  Google Scholar 

  127. Chang, Y. et al. Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials. Nat. Commun. 10, 942 (2019).

    Article  ADS  Google Scholar 

  128. Lilensten, L. & Gault, B. New approach for FIB-preparation of atom probe specimens for aluminum alloys. PLoS ONE 15, e0231179 (2020).

    Article  Google Scholar 

  129. Rivas, N. A. et al. Cryo-focused ion beam preparation of perovskite based solar cells for atom probe tomography. PLoS ONE 15, e0227920 (2020).

    Article  Google Scholar 

  130. Schreiber, D. K., Perea, D. E., Ryan, J. V., Evans, J. E. & Vienna, J. D. A method for site-specific and cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography. Ultramicroscopy 194, 89–99 (2018).

    Article  Google Scholar 

  131. Sebastian, J. T., Hellman, O. C. & Seidman, D. N. New method for the calibration of three-dimensional atom-probe mass spectra. Rev. Sci. Instrum. 72, 2984–2988 (2001).

    Article  ADS  Google Scholar 

  132. Hudson, D., Smith, G. D. W. & Gault, B. Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys. Ultramicroscopy 111, 480–486 (2011).

    Article  Google Scholar 

  133. Valley, J. W. et al. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat. Geosci. 7, 219–223 (2014).

    Article  ADS  Google Scholar 

  134. Lloyd, M. J. et al. Decoration of voids with rhenium and osmium transmutation products in neutron irradiated single crystal tungsten. Scr. Mater. 173, 96–100 (2019).

    Article  Google Scholar 

  135. Edmondson, P. D., Gault, B. & Gilbert, M. R. An atom probe tomography and inventory calculation examination of second phase precipitates in neutron irradiated single crystal tungsten. Nucl. Fusion. 60, 126013 (2020).

    Article  ADS  Google Scholar 

  136. London, A. J., Haley, D. & Moody, M. P. Single-Ion deconvolution of mass peak overlaps for atom probe microscopy. Microsc. Microanal. 23, 300–306 (2017).

    Article  ADS  Google Scholar 

  137. Wilkes, T. J., Smith, G. D. W. & Smith, D. A. On the quantitative analysis of field ion micrographs. Metallography 7, 403–430 (1974).

    Article  Google Scholar 

  138. Cerezo, A., Warren, P. J. & Smith, G. D. W. Some aspects of image projection in the field-ion microscope. Ultramicroscopy 79, 251–257 (1999).

    Article  Google Scholar 

  139. De Geuser, F. & Gault, B. Reflections on the projection of ions in atom probe tomography. Microsc. Microanal. 23, 238–246 (2017).

    Article  ADS  Google Scholar 

  140. Blavette, D., Sarrau, J. M., Bostel, A. & Gallot, J. Direction and depth of atom probe analysis. Rev. Phys. Appl. 17, 435–440 (1982).

    Article  Google Scholar 

  141. Bas, P., Bostel, A., Deconihout, B. & Blavette, D. A general protocol for the reconstruction of 3D atom probe data. Appl. Surf. Sci. 87–88, 298–304 (1995).

    Article  ADS  Google Scholar 

  142. Gault, B. et al. Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448–457 (2011).

    Article  Google Scholar 

  143. Jeske, T. & Schmitz, G. Nanoscale analysis of the early interreaction stages in Al/Ni. Scr. Mater. 45, 555–560 (2001).

    Article  Google Scholar 

  144. Hellman, O. C., du Rivage, J. B. & Seidman, D. N. Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy 95, 199–205 (2003).

    Article  Google Scholar 

  145. Oberdorfer, C., Eich, S. M. & Schmitz, G. A full-scale simulation approach for atom probe tomography. Ultramicroscopy 128, 55–67 (2013).

    Article  Google Scholar 

  146. Wei, Y. et al. 3D nanostructural characterisation of grain boundaries in atom probe data utilising machine learning methods. PLoS ONE 14, e022504 (2019).

    Article  Google Scholar 

  147. Camus, E. & Abromeit, C. Analysis of conventional and 3-dimensional atom-probe data for multiphase materials. J. Appl. Phys. 75, 2373–2382 (1994).

    Article  ADS  Google Scholar 

  148. Moody, M. P., Stephenson, L. T., Liddicoat, P. V. & Ringer, S. P. Contingency table techniques for three dimensional atom probe tomography. Microsc. Res. Tech. 70, 258–268 (2007).

    Article  Google Scholar 

  149. Moody, M. P., Stephenson, L. T., Ceguerra, A. V. & Ringer, S. P. Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data. Microsc. Res. Tech. 71, 542–550 (2008).

    Article  Google Scholar 

  150. Hellman, O. C., Vandenbroucke, J. A., Rüsing, J., Isheim, D. & Seidman, D. N. Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437–444 (2000).

    Article  ADS  Google Scholar 

  151. Felfer, P. & Cairney, J. Advanced concentration analysis of atom probe tomography data: local proximity histograms and pseudo-2D concentration maps. Ultramicroscopy 189, 61–64 (2018).

    Article  Google Scholar 

  152. Martin, T. L. et al. Insights into microstructural interfaces in aerospace alloys characterised by atom probe tomography. Mater. Sci. Technol. 32, 232–241 (2016).

    Article  Google Scholar 

  153. Hellman, O. C. & Seidman, D. N. Measurement of the Gibbsian interfacial excess of solute at an interface of arbitrary geometry using three-dimensional atom probe microscopy. Mater. Sci. Eng. 327, 24–28 (2002).

    Article  Google Scholar 

  154. Jenkins, B. M. et al. Reflections on the analysis of interfaces and grain boundaries by atom probe tomography. Microsc. Microanal. 26, 247–257 (2020).

    Article  ADS  Google Scholar 

  155. Felfer, P., Scherrer, B., Demeulemeester, J., Vandervorst, W. & Cairney, J. M. Mapping interfacial excess in atom probe data. Ultramicroscopy 159, 438–444 (2015).

    Article  Google Scholar 

  156. Peng, Z. et al. An automated computational approach for complete in-plane compositional interface analysis by atom probe tomography. Microsc. Microanal. 25, 389–400 (2019).

    Article  ADS  Google Scholar 

  157. Yao, L., Ringer, S. P., Cairney, J. M. & Miller, M. K. The anatomy of grain boundaries: their structure and atomic-level solute distribution. Scr. Mater. 69, 622–625 (2013).

    Article  Google Scholar 

  158. Araullo-Peters, V. J. et al. Atom probe crystallography: atomic-scale 3-D orientation mapping. Scr. Mater. 66, 907–910 (2012).

    Article  Google Scholar 

  159. Stephenson, L. T., Moody, M. P., Liddicoat, P. V. & Ringer, S. P. New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc. Microanal. 13, 448–463 (2007).

    Article  ADS  Google Scholar 

  160. Philippe, T. et al. Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109, 1304–1309 (2009).

    Article  Google Scholar 

  161. Dumitraschkewitz, P., Gerstl, S. S. A., Stephenson, L. T., Uggowitzer, P. J. & Pogatscher, S. Clustering in age-hardenable aluminum alloys. Adv. Eng. Mater. 20, 1800255 (2018). This article reviews and compares cluster-finding techniques, therein applied to aluminium alloys.

    Article  Google Scholar 

  162. De Geuser, F. & Lefebvre, W. Determination of matrix composition based on solute-solute nearest-neighbor distances in atom probe tomography. Microsc. Res. Tech. 74, 257–263 (2011).

    Article  Google Scholar 

  163. Morsdorf, L., Emelina, E., Gault, B., Herbig, M. & Tasan, C. C. Carbon redistribution in quenched and tempered lath martensite. Acta Mater. 205, 116521 (2020).

    Article  Google Scholar 

  164. Sudbrack, C., Noebe, R. & Seidman, D. Direct observations of nucleation in a nondilute multicomponent alloy. Phys. Rev. B 73, 212101 (2006).

    Article  ADS  Google Scholar 

  165. Haley, D., Petersen, T., Barton, G. & Ringer, S. P. Influence of field evaporation on radial distribution functions in atom probe tomography. Philos. Mag. 89, 925–943 (2009).

    Article  ADS  Google Scholar 

  166. De Geuser, F., Lefebvre, W. & Blavette, D. 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Philos. Mag. Lett. 86, 227–234 (2006).

    Article  ADS  Google Scholar 

  167. Hyde, J. M. & English, C. A. An analysis of the structure of irradiation induced Cu-enriched clusters in low and high nickel welds. Mater. Res. Soc. Symp. Proc. 650, R6.6 (2001).

    Article  Google Scholar 

  168. Miller, M. K. & Kenik, E. A. Atom probe tomography: a technique for nanoscale characterization. Microsc. Microanal. 8, 1126–1127 (2002).

    Article  ADS  Google Scholar 

  169. Vaumousse, D., Cerezo, A. & Warren, P. J. A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215–221 (2003).

    Article  Google Scholar 

  170. Marceau, R. K. W., Stephenson, L. T., Hutchinson, C. R. & Ringer, S. P. Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales. Ultramicroscopy 111, 738–742 (2011).

    Article  Google Scholar 

  171. Karnesky, R. A., Sudbrack, C. K. & Seidman, D. N. Best-fit ellipsoids of atom-probe tomographic data to study coalescence of γ’ (L12) precipitates in Ni–Al–Cr. Scr. Mater. 57, 353–356 (2007).

    Article  Google Scholar 

  172. Marquis, E. A. & Hyde, J. M. Applications of atom-probe tomography to the characterisation of solute behaviours. Mater. Sci. Eng. R. Rep. 69, 37–62 (2010).

    Article  Google Scholar 

  173. Lefebvre, W. et al. 3DAP measurements of Al content in different types of precipitates in aluminium alloys. Surf. Interface Anal. 39, 206–212 (2007).

    Article  Google Scholar 

  174. Ghamarian, I. & Marquis, E. A. Hierarchical density-based cluster analysis framework for atom probe tomography data. Ultramicroscopy 200, 28–38 (2019).

    Article  Google Scholar 

  175. Zelenty, J., Dahl, A., Hyde, J., Smith, G. D. W. & Moody, M. P. Detecting clusters in atom probe data with Gaussian mixture models. Microsc. Microanal. 23, 269–278 (2017).

    Article  ADS  Google Scholar 

  176. Felfer, P., Ceguerra, A. V., Ringer, S. P. & Cairney, J. M. Detecting and extracting clusters in atom probe data: a simple, automated method using Voronoi cells. Ultramicroscopy 150, 30–36 (2015).

    Article  Google Scholar 

  177. Vincent, G. B., Proudian, A. P. & Zimmerman, J. D. Three dimensional cluster analysis for atom probe tomography using Ripley’s K-function and machine learning. Ultramicroscopy 220, 113151 (2021).

    Article  Google Scholar 

  178. Marquis, E. A. et al. A round robin experiment: analysis of solute clustering from atom probe tomography data. Microsc. Microanal. 22, 666–667 (2016).

    Article  Google Scholar 

  179. Katnagallu, S. et al. Imaging individual solute atoms at crystalline imperfections in metals. N. J. Phys. 21, 123020 (2019).

    Article  Google Scholar 

  180. Hyde, J. M., Marquis, E. A., Wilford, K. B. & Williams, T. J. A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 111, 440–447 (2011).

    Article  Google Scholar 

  181. Williams, C. A. et al. Defining clusters in APT reconstructions of ODS steels. Ultramicroscopy 132, 271–278 (2013).

    Article  Google Scholar 

  182. Cerezo, A. & Davin, L. Aspects of the observation of clusters in the 3-dimensional atom probe. Surf. Interface Anal. 39, 184–188 (2007).

    Article  Google Scholar 

  183. Zhao, H., Gault, B., Ponge, D., Raabe, D. & De Geuser, F. Parameter free quantitative analysis of atom probe data by correlation functions: application to the precipitation in Al–Zn–Mg–Cu. Scr. Mater. 154, 106–110 (2018).

    Article  Google Scholar 

  184. Gault, B., Moody, M. P., Cairney, J. M. & Ringer, P. S. Atom probe crystallography. Mater. Today 15, 378–386 (2012).

    Article  Google Scholar 

  185. Vurpillot, F., De Geuser, F., Da Costa, G. & Blavette, D. Application of Fourier transform and autocorrelation to cluster identification in the three-dimensional atom probe. J. Microsc. 216, 234–240 (2004).

    Article  MathSciNet  Google Scholar 

  186. Yao, L. et al. Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. Ultramicroscopy 111, 458–463 (2011).

    Article  Google Scholar 

  187. Araullo-Peters, V. J. et al. A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy 154, 7–14 (2015).

    Article  Google Scholar 

  188. Geiser, B. P. et al. Spatial distribution maps for atom probe tomography. Microsc. Microanal. 13, 437–447 (2007).

    Article  ADS  Google Scholar 

  189. Boll, T., Al-Kassab, T., Yuan, Y. & Liu, Z. G. Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic. Ultramicroscopy 107, 796–801 (2007).

    Article  Google Scholar 

  190. Moody, M. P., Gault, B., Stephenson, L. T., Haley, D. & Ringer, S. P. Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815–824 (2009).

    Article  Google Scholar 

  191. Moody, M. P., Tang, F., Gault, B., Ringer, S. P. & Cairney, J. M. Atom probe crystallography: characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy 111, 493–499 (2011).

    Article  Google Scholar 

  192. Gault, B. et al. Advances in the calibration of atom probe tomographic reconstruction. J. Appl. Phys. 105, 34913 (2009).

    Article  Google Scholar 

  193. Vurpillot, F., Da Costa, G., Menand, A. & Blavette, D. Structural analyses in three-dimensional atom probe: a Fourier approach. J. Microsc. 203, 295–302 (2001).

    Article  MathSciNet  Google Scholar 

  194. Gault, B. et al. Spatial resolution in atom probe tomography. Microsc. Microanal. 16, 99–110 (2010).

    Article  ADS  Google Scholar 

  195. Ringer, S. P. Advanced nanostructural analysis of aluminium alloys using atom probe tomography. Mater. Sci. Forum 519–521, 25–34 (2006).

    Article  Google Scholar 

  196. Blavette, D., Cadel, E. & Deconihout, B. The role of the atom probe in the study of nickel-based superalloys. Mater. Charact. 44, 133–157 (2000).

    Article  Google Scholar 

  197. Blavette, D., Cadel, E., Pareige, C., Deconihout, B. & Caron, P. Phase transformation and segregation to lattice defects in Ni-base superalloys. Microsc. Microanal. 13, 464–483 (2007).

    Article  ADS  Google Scholar 

  198. Seidman, D. N., Sudbrack, C. K. & Yoon, K. E. The use of 3-D atom-probe tomography to study nickel-based superalloys. JOM 58, 34–39 (2006).

    Article  ADS  Google Scholar 

  199. Klein, T., Clemens, H. & Mayer, S. Advancement of compositional and microstructural design of intermetallic γ-TiAl based alloys determined by atom probe tomography. Materials (Basel). 9, 755 (2016).

    Article  ADS  Google Scholar 

  200. Borchers, C. & Kirchheim, R. Cold-drawn pearlitic steel wires. Prog. Mater. Sci. 82, 405–444 (2016).

    Article  Google Scholar 

  201. Raabe, D. et al. Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr. Opin. Solid. State Mater. Sci. 18, 253–261 (2014).

    Article  ADS  Google Scholar 

  202. Manzoni, A. M. & Glatzel, U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater. Charact. 147, 512–532 (2019).

    Article  Google Scholar 

  203. Marquis, E. A. et al. Nuclear reactor materials at the atomic scale. Mater. Today 12, 30–37 (2009).

    Article  Google Scholar 

  204. Marquis, E. A. et al. On the current role of atom probe tomography in materials characterization and materials science. Curr. Opin. Solid. State Mater. Sci. 17, 217–223 (2013).

    Article  ADS  Google Scholar 

  205. Ardell, A. J. & Bellon, P. Radiation-induced solute segregation in metallic alloys. Curr. Opin. Solid. State Mater. Sci. 20, 115–139 (2016).

    Article  ADS  Google Scholar 

  206. Yu, Y. et al. Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Mater. Today 32, 260–274 (2020).

    Article  Google Scholar 

  207. Giddings, A. D. et al. Industrial application of atom probe tomography to semiconductor devices. Scr. Mater. 148, 82–90 (2018).

    Article  Google Scholar 

  208. Vandervorst, W. et al. Dopant, composition and carrier profiling for 3D structures. Mater. Sci. Semicond. Process. 62, 31–48 (2017).

    Article  Google Scholar 

  209. Chang, A. S. & Lauhon, L. J. Atom probe tomography of nanoscale architectures in functional materials for electronic and photonic applications. Curr. Opin. Solid. State Mater. Sci. 22, 171–187 (2018).

    Article  ADS  Google Scholar 

  210. Rigutti, L., Bonef, B., Speck, J., Tang, F. & Oliver, R. A. Atom probe tomography of nitride semiconductors. Scr. Mater. 148, 75–81 (2017).

    Article  Google Scholar 

  211. Saxey, D. W., Moser, D. E., Piazolo, S., Reddy, S. M. & Valley, J. W. Atomic worlds: current state and future of atom probe tomography in geoscience. Scr. Mater. 148, 115–121 (2018). This brief critical review article discusses the application of APT to geological materials, and what the technique can provide in this context.

    Article  Google Scholar 

  212. Verberne, R. et al. The geochemical and geochronological implications of nanoscale trace-element clusters in rutile. Geology 48, 1126–1130 (2020).

    Article  ADS  Google Scholar 

  213. Marceau, R. K. W., Sha, G., Lumley, R. N. & Ringer, S. P. Evolution of solute clustering in Al–Cu–Mg alloys during secondary ageing. Acta Mater. 58, 1795–1805 (2010).

    Article  ADS  Google Scholar 

  214. Medrano, S. et al. Cluster hardening in Al–3Mg triggered by small Cu additions. Acta Mater. 161, 12–20 (2018).

    Article  ADS  Google Scholar 

  215. Bachhav, M., Robert Odette, G. & Marquis, E. A. α′ precipitation in neutron-irradiated Fe–Cr alloys. Scr. Mater. 74, 48–51 (2014).

    Article  Google Scholar 

  216. Li, T. et al. New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Mater. 106, 353–366 (2016).

    Article  ADS  Google Scholar 

  217. Cojocaru-Miredin, O., Cadel, E., Vurpillot, F., Mangelinck, D. & Blavette, D. Three-dimensional atomic-scale imaging of boron clusters in implanted silicon. Scr. Mater. 60, 285–288 (2009).

    Article  Google Scholar 

  218. Duguay, S. et al. Evidence of atomic-scale arsenic clustering in highly doped silicon. J. Appl. Phys. 106, 106102 (2009).

    Article  ADS  Google Scholar 

  219. Ronsheim, P. et al. Impurity measurements in silicon with D-SIMS and atom probe tomography. Appl. Surf. Sci. 255, 1547–1550 (2008).

    Article  ADS  Google Scholar 

  220. Marceau, R. K. W., Ceguerra, A. V., Breen, A. J., Raabe, D. & Ringer, S. P. Quantitative chemical-structure evaluation using atom probe tomography: short-range order analysis of Fe–Al. Ultramicroscopy 157, 12–20 (2015).

    Article  Google Scholar 

  221. Marquis, E. A. & Vurpillot, F. Chromatic aberrations in the field evaporation behavior of small precipitates. Microsc. Microanal. 14, 561–570 (2008).

    Article  ADS  Google Scholar 

  222. Thompson, K., Booske, J. H., Larson, D. J. & Kelly, T. F. Three-dimensional atom mapping of dopants in Si nanostructures. Appl. Phys. Lett. 87, 52108 (2005).

    Article  ADS  Google Scholar 

  223. Schwarz, T. et al. Correlative transmission Kikuchi diffraction and atom probe tomography study of Cu(In,Ga)Se2 grain boundaries. Prog. Photovolt. Res. Appl. 26, 196–204 (2018).

    Article  Google Scholar 

  224. Schwarz, T., Lomuscio, A., Siebentritt, S. & Gault, B. On the chemistry of grain boundaries in CuInS2 films. Nano Energy 76, 105081 (2020).

    Article  Google Scholar 

  225. Stoffers, A. et al. Complex nanotwin substructure of an asymmetric Σ9 tilt grain boundary in a silicon polycrystal. Phys. Rev. Lett. 115, 235502 (2015).

    Article  ADS  Google Scholar 

  226. Raghuwanshi, M., Wuerz, R. & Cojocaru-Mirédin, O. Interconnection between trait, structure, and composition of grain boundaries in Cu(In,Ga)Se2 thin-film solar cells. Adv. Funct. Mater. 30, 1–9 (2020).

    Article  Google Scholar 

  227. Dyck, O. et al. Accurate quantification of Si/SiGe interface profiles via atom probe tomography. Adv. Mater. Interfaces 4, 1700622 (2017).

    Article  Google Scholar 

  228. Mangelinck, D. et al. Atom probe tomography for advanced metallization. Microelectron. Eng. 120, 19–33 (2014).

    Article  Google Scholar 

  229. Panciera, F. et al. Three dimensional distributions of arsenic and platinum within NiSi contact and gate of an n-type transistor. Appl. Phys. Lett. 99, 51911 (2011).

    Article  Google Scholar 

  230. Panciera, F. et al. Ni(Pt)-silicide contacts on CMOS devices: impact of substrate nature and Pt concentration on the phase formation. Microelectron. Eng. 120, 34–40 (2014).

    Article  Google Scholar 

  231. Shimizu, Y. et al. Impact of carbon coimplantation on boron behavior in silicon: carbon–boron coclustering and suppression of boron diffusion. Appl. Phys. Lett. 98, 232101 (2011).

    Article  ADS  Google Scholar 

  232. Inoue, K. et al. Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109, 1479–1484 (2009).

    Article  Google Scholar 

  233. Tang, F. et al. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography. Appl. Phys. Lett. 106, 072104 (2015).

    Article  ADS  Google Scholar 

  234. Galtrey, M. J. et al. Three-dimensional atom probe studies of an InxGa1−xN∕GaN multiple quantum well structure: assessment of possible indium clustering. Appl. Phys. Lett. 90, 61903 (2007).

    Article  Google Scholar 

  235. Riley, J. R. et al. Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array. Nano Lett. 13, 4317–4325 (2013).

    Article  ADS  Google Scholar 

  236. Gorman, B. P. et al. in 2011 37th IEEE Photovoltaic Specialists Conf. 3357–3359 (IEEE, 2011).

  237. Dietrich, J. et al. Origins of electrostatic potential wells at dislocations in polycrystalline Cu(In,Ga)Se2 thin films. J. Appl. Phys. 115, 103507 (2014).

    Article  ADS  Google Scholar 

  238. Cojocaru-Mirédin, O. et al. Interface engineering and characterization at the atomic-scale of pure and mixed ion layer gas reaction buffer layers in chalcopyrite thin-film solar cells. Prog. Photovoltaics Res. Appl. 23, 705–716 (2014).

    Article  Google Scholar 

  239. Larson, D. J., Petford-Long, A. K., Ma, Y. Q. & Cerezo, A. Information storage materials: nanoscale characterisation by three-dimensional atom probe analysis. Acta Mater. 52, 2847–2862 (2004).

    Article  ADS  Google Scholar 

  240. Vovk, V., Schmitz, G., Hutten, A. & Heitmann, S. Mismatch-induced recrystallization of giant magneto-resistance (GMR) multilayer systems. Acta Mater. 55, 3033–3047 (2007).

    Article  ADS  Google Scholar 

  241. Gault, B. et al. High-resolution nanostructural investigation of Zn4Sb3 alloys. Scr. Mater. 63, 784–787 (2010).

    Article  Google Scholar 

  242. Yu, Y. et al. Ag-segregation to dislocations in PbTe-based thermoelectric materials. ACS Appl. Mater. Interfaces 10, 3609–3615 (2018).

    Article  Google Scholar 

  243. Gomell, L. et al. Properties and influence of microstructure and crystal defects in Fe2VAl modified by laser surface remelting. Scr. Mater. 193, 153–157 (2021).

    Article  Google Scholar 

  244. Krakauer, B. W. & Seidman, D. N. Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys. Rev. B 48, 6724–6727 (1993).

    Article  ADS  Google Scholar 

  245. Jia, Y. et al. L10 rare-earth-free permanent magnets: the effects of twinning versus dislocations in Mn–Al magnets. Phys. Rev. Mater. 4, 094402 (2020).

    Article  Google Scholar 

  246. Herbig, M. et al. Grain boundary segregation in Fe–Mn–C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography. Acta Mater. 83, 37–47 (2015).

    Article  ADS  Google Scholar 

  247. Cantwell, P. R. et al. Grain boundary complexion transitions. Annu. Rev. Mater. Res. 50, 465–492 (2020).

    Article  ADS  Google Scholar 

  248. Peter, N. J. et al. Segregation-induced nanofaceting transition at an asymmetric tilt grain boundary in copper. Phys. Rev. Lett. 121, 255502 (2018).

    Article  ADS  Google Scholar 

  249. Zhao, H. et al. Interplay of chemistry and faceting at grain boundaries in a model Al alloy. Phys. Rev. Lett. 124, 106102 (2020).

    Article  ADS  Google Scholar 

  250. Kwiatkowski da Silva, A. et al. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe–Mn alloys. Nat. Commun. 9, 1137 (2018).

    Article  ADS  Google Scholar 

  251. Chang, L., Barnard, S. J. & Smith, G. D. W. in Gilbert R. Speich Symp. Proc.: Fundamentals of Aging and Tempering in Bainitic and Martensitic Steel Products (eds Krauss, G. & Repas, P. E.) 19–28 (Iron and Steel Society, 1992).

  252. Blavette, D., Cadel, E., Fraczkeiwicz, A. & Menand, A. Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 2317–2319 (1999).

    Article  Google Scholar 

  253. Thompson, K., Flaitz, P. L., Ronsheim, P., Larson, D. J. & Kelly, T. F. Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317, 1370–1374 (2007).

    Article  ADS  Google Scholar 

  254. Hoummada, K., Mangelinck, D., Gault, B. & Cabié, M. Nickel segregation on dislocation loops in implanted silicon. Scr. Mater. 64, 378–381 (2011).

    Article  Google Scholar 

  255. Zhou, X. et al. The hidden structure dependence of the chemical life of dislocations. Sci. Adv. 7, eabf0563 (2021).

    Article  ADS  Google Scholar 

  256. Williams, C. A., Hyde, J. M., Smith, G. D. W. & Marquis, E. A. Effects of heavy-ion irradiation on solute segregation to dislocations in oxide-dispersion-strengthened Eurofer 97 steel. J. Nucl. Mater. 412, 100–105 (2011).

    Article  ADS  Google Scholar 

  257. Bachhav, M., Yao, L., Robert Odette, G. & Marquis, E. A. Microstructural changes in a neutron-irradiated Fe–6 at.%Cr alloy. J. Nucl. Mater. 453, 334–339 (2014).

    Article  ADS  Google Scholar 

  258. Felfer, P., Ceguerra, A., Ringer, S. & Cairney, J. Applying computational geometry techniques for advanced feature analysis in atom probe data. Ultramicroscopy 132, 100–106 (2013).

    Article  Google Scholar 

  259. Kuzmina, M., Herbig, M., Ponge, D., Sandlobes, S. & Raabe, D. Linear complexions: confined chemical and structural states at dislocations. Science 349, 1080–1083 (2015).

    Article  ADS  Google Scholar 

  260. Abou-Ras, D. et al. Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se2 thin films for solar cells—a review. Phys. Status Solidi Rapid Res. Lett. 10, 363–375 (2016).

    Article  ADS  Google Scholar 

  261. Makineni, S. K. et al. On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy. Acta Mater. 155, 362–371 (2018).

    Article  ADS  Google Scholar 

  262. Cadel, E., Lemarchand, D., Gay, A.-S., Fraczkiewicz, A. & Blavette, D. Atomic scale investigation of boron nanosegregation in FeAl intermetallics. Scr. Mater. 41, 421–426 (1999).

    Article  Google Scholar 

  263. Herschitz, R. & Seidman, D. N. Atomic resolution observations of solute-atom segregation effects and phase transitions in stacking faults in dilute cobalt alloys—I. Experimental results. Acta Metall. 33, 1547–1563 (1985).

    Article  Google Scholar 

  264. Makineni, S. K. et al. Elemental segregation to antiphase boundaries in a crept CoNi-based single crystal superalloy. Scr. Mater. 157, 62–66 (2018).

    Article  Google Scholar 

  265. Gomell, L. et al. Chemical segregation and precipitation at anti-phase boundaries in thermoelectric Heusler-Fe2VAl. Scr. Mater. 186, 370–374 (2020).

    Article  Google Scholar 

  266. Marceau, R. K. W. et al. Multi-scale correlative microscopy investigation of both structure and chemistry of deformation twin bundles in Fe–Mn–C steel. Microsc. Microanal. 19, 1581–1585 (2013).

    Article  ADS  Google Scholar 

  267. Barba, D. et al. On the composition of microtwins in a single crystal nickel-based superalloy. Scr. Mater. 127, 37–40 (2017).

    Article  Google Scholar 

  268. Antonov, S., Li, B., Gault, B. & Tan, Q. The effect of solute segregation to deformation twin boundaries on the electrical resistivity of a single-phase superalloy. Scr. Mater. 186, 208–212 (2020).

    Article  Google Scholar 

  269. Palanisamy, D., Raabe, D. & Gault, B. Elemental segregation to twin boundaries in a MnAl ferromagnetic Heusler alloy. Scr. Mater. 155, 144–148 (2018).

    Article  Google Scholar 

  270. Palanisamy, D., Raabe, D. & Gault, B. On the compositional partitioning during phase transformation in a binary ferromagnetic MnAl alloy. Acta Mater. 174, 227–236 (2019).

    Article  ADS  Google Scholar 

  271. He, J. et al. On the atomic solute diffusional mechanisms during compressive creep deformation of a Co–Al–W–Ta single crystal superalloy. Acta Mater. 184, 86–99 (2020).

    Article  ADS  Google Scholar 

  272. Auger, P., Pareige, P., Welzel, S. & Van Duysen, J. C. Synthesis of atom probe experiments on irradiation-induced solute segregation in French ferritic pressure vessel steels. J. Nucl. Mater. 280, 331–344 (2000).

    Article  ADS  Google Scholar 

  273. Miller, M. K., Sokolov, M. A., Nanstad, R. K. & Russell, K. F. APT characterization of high nickel RPV steels. J. Nucl. Mater. 351, 187–196 (2006).

    Article  ADS  Google Scholar 

  274. Williams, C. A., Marquis, E. A., Cerezo, A. & Smith, G. D. W. Nanoscale characterisation of ODS-Eurofer 97 steel: an atom-probe tomography study. J. Nucl. Mater. 400, 37–45 (2010).

    Article  ADS  Google Scholar 

  275. Hyde, J. M., Ellis, D., English, C. A. & Williams, T. J. in Institution of Chemical Engineers Symposium Series (eds Rosinski, S., Grossbeck, M., Allen, T. & Kumar, A.) 262–288 (ASTM International, 2000).

  276. Takeuchi, T. et al. Effects of neutron irradiation on microstructures and hardness of stainless steel weld-overlay cladding of nuclear reactor pressure vessels. J. Nucl. Mater. 449, 273–276 (2014).

    Article  ADS  Google Scholar 

  277. Meisnar, M., Moody, M. & Lozano-Perez, S. Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels. Corros. Sci. 98, 661–671 (2015).

    Article  Google Scholar 

  278. Lozano-Perez, S., Kruska, K., Iyengar, I., Terachi, T. & Yamada, T. The role of cold work and applied stress on surface oxidation of 304 stainless steel. Corros. Sci. 56, 78–85 (2012).

    Article  Google Scholar 

  279. Schreiber, D. K. et al. Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water. Microsc. Microanal. 19, 676–687 (2013).

    Article  ADS  Google Scholar 

  280. Hudson, D. & Smith, G. D. W. Initial observation of grain boundary solute segregation in a zirconium alloy (ZIRLO) by three-dimensional atom probe. Scr. Mater. 61, 411–414 (2009).

    Article  Google Scholar 

  281. Dong, Y., Motta, A. T. & Marquis, E. A. Atom probe tomography study of alloying element distributions in Zr alloys and their oxides. J. Nucl. Mater. 442, 270–281 (2013).

    Article  ADS  Google Scholar 

  282. Gin, S., Ryan, J. V., Schreiber, D. K., Neeway, J. & Cabié, M. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: application to a nuclear glass specimen altered 25years in a granitic environment. Chem. Geol. 349–350, 99–109 (2013).

    Article  ADS  Google Scholar 

  283. He, L. F. et al. Bubble formation and Kr distribution in Kr-irradiated UO2. J. Nucl. Mater. 456, 125–132 (2015).

    Article  ADS  Google Scholar 

  284. Edmondson, P. D., Parish, C. M., Zhang, Y., Hallén, A. & Miller, M. K. Helium entrapment in a nanostructured ferritic alloy. Scr. Mater. 65, 731–734 (2011).

    Article  Google Scholar 

  285. Gemma, R., Al-Kassab, T., Kirchheim, R. & Pundt, A. Studies on hydrogen loaded V–Fe8 at% films on Al2O3 substrate. J. Alloy. Compd. 446–447, 534–538 (2007).

    Article  Google Scholar 

  286. Takahashi, J., Kawakami, K., Kobayashi, Y. & Tarui, T. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr. Mater. 63, 261–264 (2010).

    Article  Google Scholar 

  287. Mouton, I. et al. Quantification challenges for atom probe tomography of hydrogen and deuterium in Zircaloy-4. Microsc. Microanal. 25, 481–488 (2018).

    Article  ADS  Google Scholar 

  288. Chang, Y. H. et al. Quantification of solute deuterium in titanium deuteride by atom probe tomography with both laser pulsing and high-voltage pulsing: Influence of the surface electric field. N. J. Phys. 21, 053025 (2019).

    Article  Google Scholar 

  289. Breen, A. J., Stephenson, L. T., Sun, B., Li, Y. & Kasian, O. Solute hydrogen and deuterium observed at the near atomic scale in high-strength steel. Acta Mater. 188, 108–120 (2020).

    Article  ADS  Google Scholar 

  290. Takahashi, J., Kawakami, K. & Kobayashi, Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel. Acta Mater. 153, 193–204 (2018).

    Article  ADS  Google Scholar 

  291. Breen, A. J. et al. Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4. Scr. Mater. 156, 42–46 (2018).

    Article  Google Scholar 

  292. Chang, Y. et al. Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale. Acta Mater. 150, 273–280 (2018).

    Article  ADS  Google Scholar 

  293. Mouton, I. et al. Hydride growth mechanism in zircaloy-4: investigation of the partitioning of alloying elements. Materialia 15, 101006 (2021).

    Article  Google Scholar 

  294. Miller, M. K. & Russell, K. F. An APFIM investigation of a weathered region of the Santa Catharina meteorite. Surf. Sci. 266, 441–445 (1992).

    Article  ADS  Google Scholar 

  295. Kuhlman, K. R., Martens, R. L., Kelly, T. F., Evans, N. D. & Miller, M. K. Fabrication of specimens of metamorphic magnetite crystals for field ion microscopy and atom probe microanalysis. Ultramicroscopy 89, 169–176 (2001).

    Article  Google Scholar 

  296. Valley, J. W. et al. Nano-and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: new tools for old minerals. Am. Mineral. 100, 1355–1377 (2015).

    Article  ADS  Google Scholar 

  297. Reddy, S. M. et al. Atom probe tomography: development and application to the geosciences. Geostand. Geoanalytical Res. 44, 5–50 (2020).

    Article  Google Scholar 

  298. Fougerouse, D. et al. Nanoscale distribution of Pb in monazite revealed by atom probe microscopy. Chem. Geol. 479, 251–258 (2018).

    Article  ADS  Google Scholar 

  299. Piazolo, S. et al. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography. Nat. Commun. 7, 10490 (2016).

    Article  ADS  Google Scholar 

  300. Peterman, E. M. et al. Nanoscale processes of trace element mobility in metamorphosed zircon. Contrib. Mineral. Petrol. 174, 92 (2019).

    Article  ADS  Google Scholar 

  301. Blum, T. B. et al. in Microstructural Geochronology: Planetary Records Down to Atom Scale Ch. 16 (eds, Moser, D. E., Corfu, F., Darling, J. R., Reddy, S. M. & Tait, K.) 327–350 (American Geophysical Union, 2018).

  302. Arcuri, G. A., Moser, D. E., Reinhard, D. A., Langelier, B. & Larson, D. J. Impact-triggered nanoscale Pb clustering and Pb loss domains in Archean zircon. Contrib. Mineral. Petrol. 175, 59 (2020).

    Article  ADS  Google Scholar 

  303. Moser, D. E. et al. Decline of giant impacts on Mars by 4.48 billion years ago and an early opportunity for habitability. Nat. Geosci. 12, 522–527 (2019).

    Article  ADS  Google Scholar 

  304. White, L. F. et al. Nanoscale chemical characterisation of phase separation, solid state transformation, and recrystallization in feldspar and maskelynite using atom probe tomography. Contrib. Mineral. Petrol. 173, 87 (2018).

    Article  ADS  Google Scholar 

  305. Blum, T. B. et al. A nanoscale record of impact-induced Pb mobility in lunar zircon. Microsc. Microanal. 25, 2448–2449 (2019).

    Article  Google Scholar 

  306. Greer, J. et al. Atom probe tomography of space-weathered lunar ilmenite grain surfaces. Meteorit. Planet. Sci. 55, 426–440 (2020).

    Article  ADS  Google Scholar 

  307. Daly, L. et al. Nebula sulfidation and evidence for migration of “free-floating” refractory metal nuggets revealed by atom probe microscopy. Geology 45, 847–850 (2017).

    Article  ADS  Google Scholar 

  308. Lewis, J. B., Isheim, D., Floss, C. & Seidman, D. N. C12/C13-ratio determination in nanodiamonds by atom-probe tomography. Ultramicroscopy 159, 248–254 (2015).

    Article  Google Scholar 

  309. Dubosq, R., Rogowitz, A., Schweinar, K., Gault, B. & Schneider, D. A. D. A. A 2D and 3D nanostructural study of naturally deformed pyrite: assessing the links between trace element mobility and defect structures. Contrib. Mineral. Petrol. 174, 72 (2019).

    Article  ADS  Google Scholar 

  310. Fougerouse, D. et al. Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite. Geosci. Front. 10, 55–63 (2019).

    Article  Google Scholar 

  311. Wu, Y.-F. et al. Gold, arsenic, and copper zoning in pyrite: a record of fluid chemistry and growth kinetics. Geology 47, 641–644 (2019).

    Article  ADS  Google Scholar 

  312. Gopon, P., Douglas, J. O., Wade, J. & Moody, M. P. Complementary SEM-EDS/FIB-SEM sample preparation techniques for atom probe tomography of nanophase-Fe0 in apollo 16 regolith sample 61501,22. Microsc. Microanal. 25, 2544–2545 (2019).

    Article  ADS  Google Scholar 

  313. Cao, M. et al. Micro- and nano-scale textural and compositional zonation in plagioclase at the Black Mountain porphyry Cu deposit: implications for magmatic processes. Am. Mineral. 104, 391–402 (2019).

    Article  ADS  Google Scholar 

  314. Parman, S. W., Diercks, D. R., Gorman, B. P. & Cooper, R. F. Atom probe tomography of isoferroplatinum. Am. Min. 100, 852–860 (2015).

    Article  ADS  Google Scholar 

  315. Dubosq, R., Rogowitz, A., Schneider, D. A., Schweinar, K. & Gault, B. Fluid inclusion induced hardening: nanoscale evidence from naturally deformed pyrite. Contrib. Mineral. Petrol. 176, 15 (2021).

    Article  ADS  Google Scholar 

  316. Petrishcheva, E. et al. Spinodal decomposition in alkali feldspar studied by atom probe tomography. Phys. Chem. Miner. 47, 30 (2020).

    Article  ADS  Google Scholar 

  317. Honour, V. C. et al. Compositional boundary layers trigger liquid unmixing in a basaltic crystal mush. Nat. Commun. 10, 4821 (2019).

    Article  ADS  Google Scholar 

  318. Schipper, C. I. et al. Volcanic SiO2-cristobalite: a natural product of chemical vapor deposition. Am. Mineral. 105, 510–524 (2020).

    Article  ADS  Google Scholar 

  319. Taylor, S. D. et al. Resolving Iron(II) sorption and oxidative growth on hematite (001) using atom probe tomography. J. Phys. Chem. C. 122, 3903–3914 (2018).

    Article  Google Scholar 

  320. Taylor, S. D. et al. Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography. Proc. Natl Acad. Sci. USA 116, 2866–2874 (2019).

    Article  ADS  Google Scholar 

  321. Bloch, E. M. et al. Diffusion of calcium in forsterite and ultra-high resolution of experimental diffusion profiles in minerals using local electrode atom probe tomography. Geochim. Cosmochim. Acta 265, 85–95 (2019).

    Article  ADS  Google Scholar 

  322. Cukjati, J. T. et al. Differences in chemical thickness of grain and phase boundaries: an atom probe tomography study of experimentally deformed wehrlite. Phys. Chem. Miner. 46, 845–859 (2019).

    Article  ADS  Google Scholar 

  323. Montalvo, S. D. et al. Nanoscale constraints on the shock-induced transformation of zircon to reidite. Chem. Geol. 507, 85–95 (2019).

    Article  ADS  Google Scholar 

  324. Rout, S. S. et al. Atom-probe tomography and transmission electron microscopy of the kamacite–taenite interface in the fast-cooled Bristol IVA iron meteorite. Meteorit. Planet. Sci. 52, 2707–2729 (2017).

    Article  ADS  Google Scholar 

  325. Gamal El Dien, H. et al. Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nat. Commun. 10, 5103 (2019).

    Article  ADS  Google Scholar 

  326. Genareau, K., Perez-Huerta, A. & Laiginhas, F. Atom probe tomography analysis of exsolved mineral phases. J. Vis. Exp. 2019, e59863 (2019).

    Google Scholar 

  327. Visart de Bocarmé, T., Chau, T.-D. & Kruse, N. Dynamic interaction of CO/H2O mixtures with gold nanocrystals: real-time imaging and local chemical probing. Surf. Sci. 600, 4205–4210 (2006).

    Article  ADS  Google Scholar 

  328. Visart de Bocarmé, T., Beketov, G. & Kruse, N. Water formation from O2 and H2 on Rh tips: studies by field ion microscopy and pulsed field desorption mass spectrometry. in. Surf. Interface Anal. 36, 522–527 (2004).

    Article  Google Scholar 

  329. Kruse, N., Schweicher, J., Bundhoo, A., Frennet, A. & Visart de Bocarmé, T. Catalytic CO hydrogenation: mechanism and kinetics from chemical transients at low and atmospheric pressures. Top. Catal. 48, 145–152 (2008).

    Article  Google Scholar 

  330. Barroo, C., Akey, A. J. & Bell, D. C. Atom probe tomography for catalysis applications: a review. Appl. Sci. 9, 2721 (2019).

    Article  Google Scholar 

  331. Perea, D. E. et al. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat. Commun. 6, 7589 (2015).

    Article  ADS  Google Scholar 

  332. Schmidt, J. E., Peng, L., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale chemical imaging of zeolites using atom probe tomography. Angew. Chem. Int. Ed. 57, 10422–10435 (2018).

    Article  Google Scholar 

  333. Ji, Z., Li, T. & Yaghi, O. M. Sequencing of metals in multivariate metal–organic frameworks. Science 369, 674–680 (2020).

    Article  ADS  Google Scholar 

  334. El-Zoka, A. A., Langelier, B., Korinek, A., Botton, G. A. & Newman, R. C. Nanoscale mechanism of the stabilization of nanoporous gold by alloyed platinum. Nanoscale 10, 4904–4912 (2018).

    Article  Google Scholar 

  335. El-Zoka, A. A., Langelier, B., Botton, G. A. & Newman, R. C. Enhanced analysis of nanoporous gold by atom probe tomography. Mater. Charact. 128, 269–277 (2017).

    Article  Google Scholar 

  336. Li, T. et al. Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 1, 300–305 (2018).

    Article  Google Scholar 

  337. Kasian, O. et al. Degradation of iridium oxides via oxygen evolution from the lattice: correlating atomic scale structure with reaction mechanisms. Energy Environ. Sci. 12, 3548–3555 (2019).

    Article  Google Scholar 

  338. Schweinar, K. et al. Probing catalytic surfaces by correlative scanning photoemission electron microscopy and atom probe tomography. J. Mater. Chem. A 8, 388–400 (2019).

    Article  Google Scholar 

  339. Gordon, L. M. & Joester, D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 469, 194–197 (2011).

    Article  ADS  Google Scholar 

  340. Gordon, L. M. et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347, 746–750 (2015).

    Article  ADS  Google Scholar 

  341. La Fontaine, A. et al. Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci. Adv. 2, e1601145 (2016).

    Article  ADS  Google Scholar 

  342. Branson, O. et al. Nanometer-scale chemistry of a calcite biomineralization template: implications for skeletal composition and nucleation. Proc. Natl Acad. Sci. USA 113, 12934 LP–12912939 (2016).

    Article  ADS  Google Scholar 

  343. Eder, K., Otter, L. M., Yang, L., Jacob, D. E. & Cairney, J. M. Overcoming challenges associated with the analysis of nacre by atom probe tomography. Geostand. Geoanalytical Res. 43, 385–395 (2019).

    Article  Google Scholar 

  344. Langelier, B., Wang, X. & Grandfield, K. Atomic scale chemical tomography of human bone. Sci. Rep. 7, 1–9 (2017).

    Article  Google Scholar 

  345. Gordon, L. M., Tran, L. & Joester, D. Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano 6, 10667–10675 (2012).

    Article  Google Scholar 

  346. Pérez-Huerta, A. & Laiginhas, F. Preliminary data on the nanoscale chemical characterization of the inter-crystalline organic matrix of a calcium carbonate biomineral. Minerals 8, 223 (2018).

    Article  Google Scholar 

  347. Pérez-Huerta, A., Suzuki, M., Cappelli, C., Laiginhas, F. & Kintsu, H. Atom probe tomography (APT) characterization of organics occluded in single calcite crystals: implications for biomineralization studies. C. J. Carbon Res. 5, 50 (2019).

    Article  Google Scholar 

  348. Nishikawa, O., Taniguchi, M., Watanabe, S., Yamagishi, A. & Sasaki, T. Scanning atom probe study of dissociation of organic molecules on titanium oxide. Jpn. J. Appl. Phys. 45, 1892–1896 (2006).

    Article  ADS  Google Scholar 

  349. Proudian, A. P. et al. Effect of diels-alder reaction in C60-tetracene photovoltaic devices. Nano Lett. 16, 6086–6091 (2016).

    Article  ADS  Google Scholar 

  350. Proudian, A. P., Jaskot, M. B., Diercks, D. R., Gorman, B. P. & Zimmerman, J. D. Atom probe tomography of molecular organic materials: sub-dalton nanometer-scale quantification. Chem. Mater. 31, 2241–2247 (2019).

    Article  Google Scholar 

  351. Eder, K. et al. A new approach to understand the adsorption of thiophene on different surfaces: an atom probe investigation of self-assembled monolayers. Langmuir 33, 9573–9581 (2017).

    Article  Google Scholar 

  352. Mohanty, S. K. & Tolochko, O. An atom probe analysis of self-assembled monolayers: a novel approach to investigate mixed and unmixed self-assembled monolayers (SAMs) on gold. Appl. Surf. Sci. 494, 152–161 (2019).

    Article  ADS  Google Scholar 

  353. Wang, L. R. C., Kreuzer, H. J. & Nishikawa, O. Polythiophene in strong electrostatic fields. Org. Electron. 7, 99–106 (2006).

    Article  Google Scholar 

  354. Nickerson, B. S., Karahka, M. & Kreuzer, H. J. Disintegration and field evaporation of thiolate polymers in high electric fields. Ultramicroscopy 159, 173–177 (2015).

    Article  Google Scholar 

  355. Nishikawa, O., Taniguchi, M. & Saito, Y. Study of characteristic fragmentation of nanocarbon by the scanning atom probe. J. Vac. Sci. Technol. A 26, 1074 (2008).

    Article  Google Scholar 

  356. Graham, W. R. & Hutchins, F. Field-Ion microscopy of DNA and RNA. Bull. Am. Phys. Soc. 18, 296 (1973).

    Google Scholar 

  357. Panitz, J. A. & Giaever, I. Ferritin deposition on field-emitter tips. Ultramicroscopy 6, 3–6 (1981).

    Article  Google Scholar 

  358. Greene, M., Prosa, T. J., Larson, D. J. & Kelly, T. F. Focused Ion beam fabrication of solidified ferritin into nanoscale volumes for compositional analysis using time-of-flight mass spectrometry methods. Microsc. Microanal. 16, 1860–1861 (2010).

    Article  ADS  Google Scholar 

  359. Perea, D. E. et al. Atom probe tomographic mapping directly reveals the atomic distribution of phosphorus in resin embedded ferritin. Sci. Rep. 6, 1–9 (2016).

    Article  Google Scholar 

  360. Rusitzka, K. A. K. et al. A near atomic-scale view at the composition of amyloid-β fibrils by atom probe tomography. Sci. Rep. 8, 1–10 (2018).

    Article  Google Scholar 

  361. Narayan, K., Prosa, T. J., Fu, J., Kelly, T. F. & Subramaniam, S. Chemical mapping of mammalian cells by atom probe tomography. J. Struct. Biol. 178, 98–107 (2012).

    Article  Google Scholar 

  362. Adineh, V. R., Marceau, R. K. W., Velkov, T., Li, J. & Fu, J. Near-atomic three-dimensional mapping for site-specific chemistry of ‘Superbugs’. Nano Lett. 16, 7113–7120 (2016).

    Article  ADS  Google Scholar 

  363. Sundell, G., Hulander, M., Pihl, A. & Andersson, M. Atom probe tomography for 3D structural and chemical analysis of individual proteins. Small 15, 1900316 (2019).

    Article  Google Scholar 

  364. McCarroll, I. E., Bagot, P. A. J., Devaraj, A., Perea, D. E. & Cairney, J. M. New frontiers in atom probe tomography: a review of research enabled by cryo and/or vacuum transfer systems. Mater. Today Adv. 7, 100090 (2020). This short review article discusses the developments and new applications in cryogenic transfer and cryogenic APT.

    Article  Google Scholar 

  365. Blum, T. B. et al. in Microscructural Geochronology: Planetary Records Down to Atom Scale Ch. 18 (eds Moser, D. E., Corfu, F., Darling, J. R., Reddy, S. M. & Tait, K.) 369–373 (American Geophysical Union, 2017).

  366. Haley, D., London, A. J. & Moody, M. P. Processing APT spectral backgrounds for improved quantification. Microsc. Microanal. 26, 964–977 (2020).

    Article  ADS  Google Scholar 

  367. Kühbach, M. et al. Building a library of simulated atom probe data for different crystal structures and tip orientations using TAPSim. Microsc. Microanal. 25, 320–330 (2019).

    Article  ADS  Google Scholar 

  368. Cairney, J. M. et al. Mining information from atom probe data. Ultramicroscopy 159, 324–337 (2015).

    Article  Google Scholar 

  369. Ceguerra, A. V. A. V. et al. The rise of computational techniques in atom probe microscopy. Curr. Opin. Solid. State Mater. Sci. 17, 224–235 (2013).

    Article  ADS  Google Scholar 

  370. Kühbach, M., Bajaj, P., Çelik, M. H., Jägle, E. A. & Gault, B. On strong scaling and open source tools for analyzing atom probe tomography data. Preprint at https://arxiv.org/abs/2004.05188 (2020).

  371. Keutgen, J., London, A. J. & Cojocaru-Mirédin, O. Solving peak overlaps for proximity histogram analysis of complex interfaces for atom probe tomography data. Microsc. Microanal. 27, 28–35 (2020).

    Article  ADS  Google Scholar 

  372. Exertier, F. et al. Atom probe tomography analysis of the reference zircon GJ-1: an interlaboratory study. Chem. Geol. 495, 27–35 (2018).

    Article  ADS  Google Scholar 

  373. Diercks, D. R., Gorman, B. P. & Gerstl, S. S. A. An open-access atom probe tomography mass spectrum database. Microsc. Microanal. 23, 664–665 (2017).

    Article  ADS  Google Scholar 

  374. Kelly, T. F., Geiser, B. P. & Larson, D. J. Definition of spatial resolution in atom probe tomography. Microsc. Microanal. 13, 1604–1605 (2007).

    Article  Google Scholar 

  375. Gault, B. et al. Origin of the spatial resolution in atom probe microscopy. Appl. Phys. Lett. 95, 34103 (2009).

    Article  Google Scholar 

  376. Cadel, E., Vurpillot, F., Larde, R., Duguay, S. & Deconihout, B. Depth resolution function of the laser assisted tomographic atom probe in the investigation of semiconductors. J. Appl. Phys. 106, 44908 (2009).

    Article  Google Scholar 

  377. Gault, B. et al. Influence of the wavelength on the spatial resolution of pulsed-laser atom probe. J. Appl. Phys. 110, 94901 (2011).

    Article  Google Scholar 

  378. Hyde, J. M., Cerezo, A., Setna, R. P., Warren, P. J. & Smith, G. D. W. Lateral and depth scale calibration of the position sensitive atom probe. Appl. Surf. Sci. 76–77, 382–391 (1994).

    Article  ADS  Google Scholar 

  379. Gault, B. et al. Dynamic reconstruction for atom probe tomography. Ultramicroscopy 111, 1619–1624 (2011).

    Article  Google Scholar 

  380. Gault, B., La Fontaine, A., Moody, M. P., Ringer, S. P. & Marquis, E. A. Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy 110, 1215–1222 (2010).

    Article  Google Scholar 

  381. Moore, A. J. W. & Spink, J. A. Influence of surface coordination on field evaporation processes in tungsten. Surf. Sci. 44, 198–212 (1974).

    Article  ADS  Google Scholar 

  382. Vurpillot, F. & Oberdorfer, C. Modeling atom probe tomography: a review. Ultramicroscopy 159, 202–216 (2015). This article presents an overview of image simulations and field evaporation modelling techniques.

    Article  Google Scholar 

  383. Sanchez, C. G., Lozovoi, A. Y. & Alavi, A. Field-evaporation from first-principles. Mol. Phys. 102, 1045–1055 (2004).

    Article  ADS  Google Scholar 

  384. Ashton, M., Mishra, A., Neugebauer, J. & Freysoldt, C. Ab initio description of bond breaking in large electric fields. Phys. Rev. Lett. 124, 176801 (2020). This article presents a new development of density-functional theory and its application to describe the field evaporation process ab initio.

    Article  ADS  Google Scholar 

  385. Prokoshkina, D., Esin, V. A., Wilde, G. & Divinski, S. V. Grain boundary width, energy and self-diffusion in nickel: effect of material purity. Acta Mater. 61, 5188–5197 (2013).

    Article  ADS  Google Scholar 

  386. Mistler, R. E. & Coble, R. L. Grain-boundary diffusion and boundary widths in metals and ceramics. J. Appl. Phys. 45, 1507–1509 (1974).

    Article  ADS  Google Scholar 

  387. Chellali, M. R. et al. Triple junction transport and the impact of grain boundary width in nanocrystalline Cu. Nano Lett. 12, 3448–3454 (2012).

    Article  ADS  Google Scholar 

  388. Danoix, F., Grancher, G., Bostel, A. & Blavette, D. Standard deviations of composition measurements in atom probe analyses. Part I conventional 1D atom probe. Ultramicroscopy 107, 734–738 (2007).

    Article  Google Scholar 

  389. Gault, B. et al. Behavior of molecules and molecular ions near a field emitter. N. J. Phys. 18, 33031 (2016).

    Article  Google Scholar 

  390. Sundell, G., Thuvander, M. & Andrén, H.-O. Hydrogen analysis in APT: methods to control adsorption and dissociation of H2. Ultramicroscopy 132, 285–289 (2013).

    Article  Google Scholar 

  391. Gault, B., Danoix, F., Hoummada, K., Mangelinck, D. & Leitner, H. Impact of directional walk on atom probe microanalysis. Ultramicroscopy 113, 182–191 (2012).

    Article  Google Scholar 

  392. Wang, S. C. & Tsong, T. T. Field and temperature-dependence of the directional walk of single adsorbed W-atoms on the W(110) plane. Phys. Rev. B 26, 6470–6475 (1982).

    Article  ADS  Google Scholar 

  393. Marquis, E. A., Geiser, B. P., Prosa, T. J. & Larson, D. J. Evolution of tip shape during field evaporation of complex multilayer structures. J. Microsc. 241, 225–233 (2011).

    Article  Google Scholar 

  394. Felfer, P. J. et al. A new approach to the determination of concentration profiles in atom probe tomography. Microsc. Microanal. 18, 359–364 (2012).

    Article  ADS  Google Scholar 

  395. Sauvage, X. et al. Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater. 49, 389–394 (2001).

    Article  ADS  Google Scholar 

  396. Gault, B. et al. Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al–Cu–Li–Mg–Ag alloy. Ultramicroscopy 111, 683–689 (2011).

    Article  Google Scholar 

  397. De Geuser, F. et al. An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf. Interface Anal. 39, 268–272 (2007).

    Article  Google Scholar 

  398. Kelly, T. F., Miller, M. K., Rajan, K. & Ringer, S. P. Atomic-scale tomography: a 2020 vision. Microsc. Microanal. 19, 652–664 (2013).

    Article  ADS  Google Scholar 

  399. Kirchhofer, R., Diercks, D. R. & Gorman, B. P. Electron diffraction and imaging for atom probe tomography. Rev. Sci. Instrum. 89, 053706 (2018).

    Article  ADS  Google Scholar 

  400. Schmitz, G. & Stender, P. Description: Method for preparation of needle tip for atom probe tomography, involves guiding through hole of planar drain electrode into measuring position based on measured coordinates of sample for performing tomography by manipulator. German patent DE102011119164 (2013).

  401. Stender, P., Ott, J., Balla, I. & Schmitz, G. in NIST Special Publication 2100-03: Proc. Int. Conf. Atom Probe Tomography and Microscopy (APT&M 2018) (ed. NIST) 111 (NIST Special Publications, 2018).

  402. Lambeets, S. V. et al. Nanoscale perspectives of metal degradation via in situ atom probe tomography. Top. Catal. 63, 1606–1622 (2020).

    Article  Google Scholar 

  403. Dumpala, S., Broderick, S. R., Bagot, P. A. J. & Rajan, K. An integrated high temperature environmental cell for atom probe tomography studies of gas-surface reactions: instrumentation and results. Ultramicroscopy 141, 16–21 (2014).

    Article  Google Scholar 

  404. Houard, J. et al. A photonic atom probe coupling 3D atomic scale analysis with in situ photoluminescence spectroscopy. Rev. Sci. Instrum. 91, 083704 (2020).

    Article  ADS  Google Scholar 

  405. Gorman, B. Hardware engineering for an APT in a TEM objective lens. Microsc. Microanal. 26, 2614–2615 (2020).

    Article  ADS  Google Scholar 

  406. Kelly, T., Dunin-Borkowski, R. & Meyer, J. Project Tomo: toward atomic-scale analytical tomography. Microsc. Microanal. 26, 2618–2621 (2020).

    Article  ADS  Google Scholar 

  407. Walck, S. D. & Hren, J. J. FIM/IAP/TEM studies of hydrogen in metals. J. Phys. 45, 355–360 (1984).

    Google Scholar 

  408. Medeiros, J. M. et al. Robust workflow and instrumentation for cryo-focused ion beam milling of samples for electron cryotomography. Ultramicroscopy 190, 1–11 (2018).

    Article  Google Scholar 

  409. Gerstl, S. S. A., Tacke, S., Chen, Y.-S., Wagner, J. & Wepf, R. Enabling atom probe analyses of new materials classes with vacuum-cryo-transfer capabilities. Microsc. Microanal. 23, 612 (2017).

    Article  Google Scholar 

  410. Stephenson, L. T. et al. The Laplace project: an integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions. PLoS ONE 13, 1–13 (2018).

    Article  Google Scholar 

  411. Bagot, P. A. J., Visart de Bocarmé, T., Cerezo, A. & Smith, G. D. W. 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces I: instrumentation. Surf. Sci. 600, 3028–3035 (2006).

    Article  ADS  Google Scholar 

  412. Chiaramonti, A. N. et al. A three-dimensional atom probe microscope incorporating a wavelength-tuneable femtosecond-pulsed coherent extreme ultraviolet light source. MRS Adv. 4, 2367–2375 (2019).

    Article  Google Scholar 

  413. Chiaramonti, A. N. et al. Field Ion emission in an atom probe microscope triggered by femtosecond-pulsed coherent extreme ultraviolet light. Microsc. Microanal. 26, 258–266 (2020).

    Article  ADS  Google Scholar 

  414. Viswanathan, B., Drachsel, W., Block, J. H. & Tsong, T. T. Photon enhanced field ionization on semiconductor surfaces. J. Chem. Phys. 70, 2582 (1979).

    Article  ADS  Google Scholar 

  415. Suttle, J. et al. A superconducting ion detection scheme for atom probe tomography. APS March Meeting Abstracts 2016, Y7.003 (2016).

    Google Scholar 

  416. Bacchi, C. et al. Development of an energy-sensitive detector for the atom probe tomography. Preprint at https://arxiv.org/abs/2103.04765 (2021).

  417. Vurpillot, F. et al. True atomic-scale imaging in three dimensions: a review of the rebirth of field-ion microscopy. Microsc. Microanal. 23, 1–11 (2017).

    Article  Google Scholar 

  418. Vurpillot, F., Gilbert, M. & Deconihout, B. Towards the three-dimensional field ion microscope. Surf. Interface Anal. 39, 273–277 (2007).

    Article  Google Scholar 

  419. Wille, C., Al-Kassab, T., Heinrich, A. & Kirchheim, R. in IVNC 2006/IFES 2006 17–18 (IEEE, 2006).

  420. Dagan, M., Gault, B., Smith, G. D. W., Bagot, P. A. J. & Moody, M. P. Automated atom-by-atom three-dimensional (3D) reconstruction of field ion microscopy data. Microsc. Microanal. 23, 255–268 (2017).

    Article  ADS  Google Scholar 

  421. Katnagallu, S. et al. Advanced data mining in field ion microscopy. Mater. Charact. 146, 307–318 (2018).

    Article  Google Scholar 

  422. Klaes, B. et al. A model to predict image formation in the three-dimensional field ion microscope. Comput. Phys. Commun. 260, 107317 (2020).

    Article  Google Scholar 

  423. Katnagallu, S., Morgado, F. F. F., Mouton, I., Gault, B. & Stephenson, L. T. Three-dimensional atomically-resolved analytical imaging with a field ion microscope. Preprint at https://arxiv.org/abs/2103.11010 (2021).

  424. Silaeva, E. P., Uchida, K., Suzuki, Y. & Watanabe, K. Energetics and dynamics of laser-assisted field evaporation: time-dependent density functional theory simulations. Phys. Rev. B Condens. Matter Mater. Phys. 92, 15540 (2015).

    Article  Google Scholar 

  425. Vurpillot, F., Bostel, A. & Blavette, D. Trajectory overlaps and local magnification in three-dimensional atom probe. Appl. Phys. Lett. 76, 3127–3129 (2000).

    Article  ADS  Google Scholar 

  426. Oberdorfer, C., Eich, S. M., Lütkemeyer, M. & Schmitz, G. Applications of a versatile modelling approach to 3D atom probe simulations. Ultramicroscopy 159, 184–194 (2015).

    Article  Google Scholar 

  427. Oberdorfer, C. et al. Influence of surface relaxation on solute atoms positioning within atom probe tomography reconstructions. Mater. Charact. 146, 324–335 (2018).

    Article  Google Scholar 

  428. Larson, D. J., Gault, B., Geiser, B. P., De Geuser, F. & Vurpillot, F. Atom probe tomography spatial reconstruction: status and directions. Curr. Opin. Solid. State Mater. Sci. 17, 236–247 (2013). This critical review provides a perspective on the tomographic reconstruction process.

    Article  ADS  Google Scholar 

  429. Beinke, D., Oberdorfer, C. & Schmitz, G. Towards an accurate volume reconstruction in atom probe tomography. Ultramicroscopy 165, 34–41 (2016).

    Article  Google Scholar 

  430. Rolland, N. et al. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials. Ultramicroscopy 159, 195–201 (2015).

    Article  Google Scholar 

  431. Fletcher, C., Moody, M. P. & Haley, D. Towards model-driven reconstruction in atom probe tomography. J. Phys. D. Appl. Phys. 53, 475303 (2020).

    Article  ADS  Google Scholar 

  432. Beinke, D. et al. Extracting the shape of nanometric field emitters. Nanoscale 12, 2820–2832 (2020).

    Article  Google Scholar 

  433. Fleischmann, C., Paredis, K., Melkonyan, D. & Vandervorst, W. Revealing the 3-dimensional shape of atom probe tips by atomic force microscopy. Ultramicroscopy 194, 221–226 (2018).

    Article  Google Scholar 

  434. Haley, D., Petersen, T., Ringer, S. P. & Smith, G. D. W. Atom probe trajectory mapping using experimental tip shape measurements. J. Microsc. 244, 170–180 (2011).

    Article  Google Scholar 

  435. Fletcher, C., Moody, M. P. & Haley, D. Fast modelling of field evaporation in atom probe tomography using level set methods. J. Phys. D Appl. Phys. 52, 435305 (2019).

    Article  ADS  Google Scholar 

  436. Wei, Y. et al. Machine-learning-based atom probe crystallographic analysis. Ultramicroscopy 194, 15–24 (2018).

    Article  Google Scholar 

  437. Meisenkothen, F., Samarov, D. V., Kalish, I. & Steel, E. B. Exploring the accuracy of isotopic analyses in atom probe mass spectrometry. Ultramicroscopy 216, 113018 (2020).

    Article  Google Scholar 

  438. Madireddy, S. et al. Phase segmentation in atom-probe tomography using deep learning-based edge detection. Sci. Rep. 9, 1–10 (2019).

    Article  MathSciNet  Google Scholar 

  439. Stintz, A. & Panitz, J. A. Imaging atom-probe analysis of an aqueous interface. J. Vac. Sci. Technol. Vacuum Surf. Film. 9, 1365–1367 (1991).

    Article  ADS  Google Scholar 

  440. Stintz, A. & Panitz, J. A. Isothermal ramped field-desorption of water from metal-surfaces. J. Appl. Phys. 72, 741–745 (1992).

    Article  ADS  Google Scholar 

  441. Pinkerton, T. D. et al. Electric field effects in ionization of water-ice layers on platinum. Langmuir 15, 851–855 (1999).

    Article  Google Scholar 

  442. Stuve, E. M. Ionization of water in interfacial electric fields: an electrochemical view. Chem. Phys. Lett. 519–520, 1–17 (2012).

    Article  ADS  Google Scholar 

  443. Adineh, V. R. et al. Graphene-enhanced 3D chemical mapping of biological specimens at near-atomic resolution. Adv. Funct. Mater. 28, 1801439 (2018). This article reports a new approach to enable the analysis of biological samples by APT, discussing aspects of what the technique can bring.

    Article  Google Scholar 

  444. Qiu, S. et al. Direct imaging of liquid–nanoparticle interfaces with atom probe tomography. J. Phys. Chem. C 124, 19389–19395 (2020).

    Article  Google Scholar 

  445. Panitz, J. A. In search of the chimera: molecular imaging in the atom-probe. Micros. Microanal. 11, 92–93 (2005).

    Article  Google Scholar 

  446. Graham, W. R., Hutchinson, F. & Reed, D. A. Field ion microscope images of DNA and other organic molecules. J. Appl. Phys. 44, 5155–5159 (1973).

    Article  ADS  Google Scholar 

  447. Kim, S. H. et al. Characterization of Pd and Pd@Au core-shell nanoparticles using atom probe tomography and field evaporation simulation. J. Alloy. Compd. 831, 154721 (2020).

    Article  Google Scholar 

  448. Sha, G. et al. Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy 111, 500–505 (2011).

    Article  Google Scholar 

  449. Kontis, P. et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys. Acta Mater. 177, 209–221 (2019).

    Article  ADS  Google Scholar 

  450. Zhao, H. et al. Segregation assisted grain boundary precipitation in a model Al–Zn–Mg–Cu alloy. Acta Mater. 156, 318–329 (2018).

    Article  ADS  Google Scholar 

  451. Ashcroft, N. & Mermin, D. Solid State Physics (Thomson Learning, 1976).

  452. Gault, B., Moody, M. P., Cairney, J. M. & Ringer, S. P. Atom Probe Microscopy Vol. 160 (Springer, 2012).

  453. Tsong, T. T. Field penetration and band bending for semiconductor of simple geometries in high electric-fields. Surf. Sci. 81, 1–18 (1979).

    Article  ADS  Google Scholar 

  454. Miller, M. K. & Forbes, R. G. Atom-Probe Tomography (Springer, 2014).

  455. Many, A., Goldstein, Y. & Grover, N. B. Semiconductor Surfaces (North-Holland, 1965).

  456. Mönch, W. Semiconductor Surfaces and Interfaces 2nd edn (Springer, 1995).

  457. Cerezo, A., Grovenor, C. R. M. & Smith, G. D. W. Pulsed laser atom probe analysis of GaAs and InAs. Appl. Phys. Lett. 46, 567 (1985).

    Article  ADS  Google Scholar 

  458. Robins, E. S., Lee, M. J. G. & Langlois, P. Effect of optical diffraction on laser heating of a field emitter. Can. J. Phys. 64, 111 (1986).

    Article  ADS  Google Scholar 

  459. Houard, J., Vella, A., Vurpillot, F. & Deconihout, B. Three-dimensional thermal response of a metal subwavelength tip under femtosecond laser illumination. Phys. Rev. B 84, 33405 (2011).

    Article  ADS  Google Scholar 

  460. Sundaram, S. K. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1, 217–224 (2002).

    Article  ADS  Google Scholar 

  461. Tsong, T. Pulsed-laser-stimulated field ion emission from metal and semiconductor surfaces: a time-of-flight study of the formation of atomic, molecular, and cluster ions. Phys. Rev. B 30, 4946–4961 (1984).

    Article  ADS  Google Scholar 

  462. Tsong, T. T. & Liou, Y. Cluster-ion formation in pulsed-laser-stimulated field desorption of condensed materials. Phys. Rev. B 32, 4340–4357 (1985).

    Article  ADS  Google Scholar 

  463. Cojocaru-Mirédin, O. et al. Characterization of grain boundaries in Cu(In,Ga)Se2 films using atom-probe tomography. IEEE J. Photovolt. 1, 207–212 (2011).

    Article  Google Scholar 

  464. Cojocaru-Mirédin, O., Choi, P., Wuerz, R. & Raabe, D. Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. Ultramicroscopy 111, 552–556 (2011).

    Article  Google Scholar 

  465. Blum, I. et al. Dissociation dynamics of molecular ions in high DC electric field. J. Phys. Chem. A 120, 3654–3662 (2016).

    Article  Google Scholar 

  466. Tsong, T. T. & Cole, M. W. Dissociation of compound ions in a high electric field: atomic tunneling, orientational, and isotope effects. Phys. Rev. B 35, 66 (1987).

    Article  ADS  Google Scholar 

  467. Forbes, R. G. Field evaporation theory: a review of basic ideas. Appl. Surf. Sci. 87–88, 1–11 (1995).

    Article  ADS  Google Scholar 

  468. Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. Thermal response of a field emitter subjected to ultra-fast laser illumination. J. Phys. D Appl. Phys. 42, 125502 (2009).

    Article  ADS  Google Scholar 

  469. Cerezo, A., Smith, G. D. W. & Clifton, P. H. Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Appl. Phys. Lett. 88, 154103 (2006).

    Article  ADS  Google Scholar 

  470. Sha, G., Cerezo, A. & Smith, G. D. W. Field evaporation behavior during irradiation with picosecond laser pulses. Appl. Phys. Lett. 92, 43503 (2008).

    Article  Google Scholar 

  471. Müller, M., Gault, B., Smith, G. D. W. & Grovenor, C. R. M. Accuracy of pulsed laser atom probe tomography for compound semiconductor analysis. J. Phys. Conf. Ser. 326, 12031 (2011).

    Article  Google Scholar 

  472. Mazumder, B., Vella, a, Deconihout, B. & Al-Kassab, T. Evaporation mechanisms of MgO in laser assisted atom probe tomography. Ultramicroscopy 111, 571–575 (2011).

    Article  Google Scholar 

  473. Rice, K. P., Chen, Y., Prosa, T. J. & Larson, D. J. Implementing transmission electron backscatter diffraction for atom probe tomography. Microsc. Microanal. 22, 583–588 (2016).

    Article  ADS  Google Scholar 

  474. Babinsky, K., De Kloe, R., Clemens, H. & Primig, S. A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144, 9–18 (2014).

    Article  Google Scholar 

  475. Breen, A. J. et al. Correlating atom probe crystallographic measurements with transmission Kikuchi diffraction data. Microsc. Microanal. 23, 279–290 (2017).

    Article  ADS  Google Scholar 

  476. Loberg, B. & Norden, H. Observations of the field-evaporation end form of tungsten. Ark. Fys. 39, 383–395 (1968).

    Google Scholar 

  477. Ceguerra, A. V., Breen, A. J., Cairney, J. M., Ringer, S. P. & Gorman, B. P. Integrative atom probe tomography using scanning transmission electron microscopy-centric atom placement as a step toward atomic-scale tomography. Microsc. Microanal. 27, 140–148 (2021).

    Article  ADS  Google Scholar 

  478. Mouton, I. et al. Toward an accurate quantification in atom probe tomography reconstruction by correlative electron tomography approach on nanoporous materials. Ultramicroscopy 182, 112–117 (2017).

    Article  Google Scholar 

  479. Arslan, I., Marquis, E. A., Homer, M., Hekmaty, M. A. & Bartelt, N. C. Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 1579–1585 (2008).

    Article  Google Scholar 

  480. Diercks, D. R. & Gorman, B. P. Self-consistent atom probe tomography reconstructions utilizing electron microscopy. Ultramicroscopy 195, 32–46 (2018).

    Article  Google Scholar 

  481. Costa, G. D. et al. Advance in multi-hit detection and quantization in atom probe tomography. Rev. Sci. Instrum. 83, 123709 (2012).

    Article  ADS  Google Scholar 

  482. Peng, Z. et al. On the detection of multiple events in atom probe tomography. Ultramicroscopy 189, 54–60 (2018).

    Article  Google Scholar 

  483. Thuvander, M., Kvist, A., Johnson, L. J. S., Weidow, J. & Andrén, H.-O. Reduction of multiple hits in atom probe tomography. Ultramicroscopy 132, 81–85 (2013).

    Article  Google Scholar 

  484. Meisenkothen, F., Steel, E. B., Prosa, T. J., Henry, K. T. & Prakash Kolli, R. Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101–111 (2015).

    Article  Google Scholar 

  485. La Fontaine, A. et al. Interpreting atom probe data from chromium oxide scales. Ultramicroscopy 159, 354–359 (2015).

    Article  Google Scholar 

  486. Allegrini, F., Wimmer-Schweingruber, R. F., Wurz, P. & Bochsler, P. Determination of low-energy ion-induced electron yields from thin carbon foils. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 211, 487–494 (2003).

    Article  ADS  Google Scholar 

  487. Ohkubo, M., Shigetomo, S., Ukibe, M., Fujii, G. & Matsubayashi, N. Superconducting tunnel junction detectors for analytical sciences. IEEE Trans. Appl. Supercond. 24, 2400208 (2014).

    Article  Google Scholar 

  488. Shiki, S. et al. Kinetic-energy-sensitive mass spectrometry for separation of different ions with the same m/z value. J. Mass. Spectrom. 43, 1686–1691 (2008).

    Article  ADS  Google Scholar 

  489. Keller, H., Klingelhöfer, G. & Kankeleit, E. A position sensitive microchannelplate detector using a delay line readout anode. Nucl. Inst. Methods Phys. Res. A 258, 221–224 (1987).

    Article  ADS  Google Scholar 

  490. Müller, E. W. Field desorption. Phys. Rev. 102, 618–624 (1956).

    Article  ADS  Google Scholar 

  491. Gomer, R. Field-emission, field-ionization, and field desorption. Surf. Sci. 299, 129–152 (1994).

    Article  ADS  Google Scholar 

  492. Haydock, R. & Kingham, D. R. Post-Ionization of field-evaporated Ions. Phys. Rev. Lett. 44, 1520–1523 (1980).

    Article  ADS  Google Scholar 

  493. Forbes, R. G. Field electron and ion emission from charged surfaces: a strategic historical review of theoretical concepts. Ultramicroscopy 95, 1–18 (2003).

    Article  Google Scholar 

  494. Neugebauer, J. & Scheffler, M. Theory of adsorption and desorption in high electric-fields. Surf. Sci. 287–288, 572–576 (1993).

    Article  ADS  Google Scholar 

  495. Kreuzer, H. J., Wang, L. C. & Lang, N. D. Self-consistent calculation of atomic adsorption on metals in high electric-fields. Phys. Rev. B 45, 12050–12055 (1992).

    Article  ADS  Google Scholar 

  496. McMullen, E. R. & Perdew, J. P. Theory of field evaporation of the surface layer in jellium and other metals. Phys. Rev. B 36, 2598 (1987).

    Article  ADS  Google Scholar 

  497. Schmidt, W. A., Ernst, N. & Suchorski, Y. Local electric-fields at individual atomic surface sites—field-ion appearance energy measurements. Appl. Surf. Sci. 67, 101–110 (1993).

    Article  ADS  Google Scholar 

  498. Zanuttini, D. et al. Electronic structure and stability of the SiO2+ dications produced in tomographic atom probe experiments. J. Chem. Phys. 147, 164301 (2017).

    Article  ADS  Google Scholar 

  499. Zanuttini, D. et al. Dissociation of GaN2+ and AlN2+ in APT: analysis of experimental measurements. J. Chem. Phys. 149, 134311 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This Primer was a collaborative effort and, even though the authors tried to be inclusive of all perspectives on various aspects of atom probe tomography (APT) research, it reflects our experiences and some articles likely escaped our attention. Apologies to those forgotten — it was not intentional. B.G. is thankful to past and present members of the Atom Probe group at Max-Planck-Institut für Eisenforschung (MPIE) and financial support from the European Research Council (ERC) (ERC-CoG-SHINE-771602), the Max-Planck Society, the BMBF (Federal Ministry of Education and Research), the Deutsche Forschungsgemeinsschaft (DFG) including for the Leibniz Prize, the Volkswagen Stiftung, the Alexander von Humboldt Stiftung and the Engineering and Physical Sciences Research Council (EPSRC) (and some companies). J.M.C. is grateful to the Australian Research Council (ARC) for her Future Fellowship. O.C.-M. is grateful for funding from the BMWi EFFCIS II and DFG 917 Nanoswitches. T.L. thanks the DFG for financial support (project number 407513992). R.D. acknowledges NSERC (Natural Sciences and Engineering Research Council of Canada) for her doctoral postgraduate scholarship (PGS-D). P.S. is grateful for funding from the BMBF (VIP 03V0756). S.K.M. acknowledges financial support from AVH and funding from the DFG SFB-TR103 project A4. M.M. acknowledges financial support EPSRC grants EP/M022803/1 and EP/S021663/1.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (B.G.); Experimentation (P.S., S.K.M., B.G. and C.F.); Results (M.M. and B.G.); Applications (J.M.C., M.M., O.C.-M., A.C., R.D., T.L. and B.G.); Reproducibility and data deposition (B.G.); Limitations and optimizations (B.G.); Outlook (B.G., O.C.-M., P.S., R.D., S.K.M., T.L., M.M., A.C., J.M.C. and C.F.); Overview of the Primer (B.G. and A.C.).

Corresponding authors

Correspondence to Baptiste Gault or Ann Chiaramonti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks C. Cappelli, D. Perea, A. Perez-Huerta, H. Wen, J. Zimmerman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

APT-HDF5 file specification: https://docs.google.com/document/u/2/d/e/2PACX-1vRxcJ_xF_jiNS77CoeZdQdDXD8l2BebL-DoOBkDrAsGTrkArdjLHEMCXAifBieeS8pTO9jJ9xnstKxs/pub

APT Technical Committee: https://groups.google.com/g/atomprobe-tc?pli=1

INSPICO High Resolution Analysis: https://www.inspico.eu/Home/

Software tools for APT analysis: https://tinyurl.com/APM-SoftwareList

Steam Instruments: https://steaminstruments.com/

Glossary

Solutes

Atoms of a species different from the main constituent atoms, which correspond to the solvent in a mixture. Solutes, often called dopants in electronic materials, are added to modify the material’s properties.

Microstructural imperfections

Irregularities in the arrangement of atoms in a crystal, often modifying a material’s physical properties. These include lattice defects as well as inclusions of isolated or clustered foreign atoms, second phases or particles forming in a matrix of the main constituting element (solvent).

Vacancies

Atoms missing from one of the crystal lattice sites forming a point defect.

Dislocations

Linear crystal defects typically associated with the plastic deformation of a material. There are two main types of dislocation, edge and screw. A single defect can exhibit both characteristics in different parts along the dislocation line. Mobile (glissile) and immobile (sessile) dislocations both exist. In the case of an edge dislocation, the addition of an extra half-plane of atoms in the structure results in a compressive stress on one side of the dislocation and a tensile stress on the other. Segregation of solute elements to the dislocation helps reduce the free energy associated with these defects.

Stacking faults

Local changes in the stacking sequence of atomic layers in a crystal.

Twins

Two crystals with a defined crystallographic relationship with each other, formed typically by a cooperative displacement of atoms along a specific plane referred to as a twin boundary, which can be caused by plastic deformation. The organization of atoms on either side of the twin boundary can be such that they are mirror images of each other, or follow a specific rational twin law. Twin boundaries are often considered low-energy.

Grain boundaries

Junctions of two crystals (most crystalline materials are made of an ensemble of individual crystals, referred to as grains). The local discontinuity of the atomic arrangement makes grain boundaries loci of interest for microstructure design. Segregation of solutes typically happens to minimize the system’s free energy, and grain boundaries assist with heterogeneous nucleation of secondary phases, for instance. The grain boundary energy depends on the magnitude of the change in orientation between the two grains as well as the crystallographic plane at the junction of the two grains.

Secondary phases and phase boundaries

Solids formed by a mixture of species can adopt one or more thermodynamic phases, which can sometimes co-exist. The formation of such secondary phases can be hindered by the kinetics, often associated with lattice diffusion and thermal activation. The discontinuity in the crystal lattice introduced by the presence of this second phase forms a phase boundary. The difference in the lattice unit cell can make secondary phases only partially or completely incoherent with the host lattice. Often, there exists a relationship in the crystalline orientation between the matrix and the secondary phase particle.

Composition

The relative quantity of atoms of a species with respect to all atoms of all the detected species given in atomic per cent.

Polarity

Here, the electrical polarity, used to represent the electric positive (+) or negative (−) sign of the electrical potential at the ends of an electrical circuit.

Field ionization

A physical phenomenon whereby atoms or molecules can be ionized because of an intense electric field.

Field evaporation

A physical phenomenon whereby atoms constituting a material can be removed in the form of ions because of an intense electric field.

Projection optic

In microscopy, the transfer of the image of an object onto a surface through an optical system that can contain lenses or mirrors, for instance.

Time-of-flight mass spectrometer

A spectrometer that exploits the proportionality of an ion’s mass to charge ratio with its time of flight from a source to a particle detector to deduce the nature of atomic or molecular ions.

Reflectron

An electrostatic mirror that can be flat or concave helping to correct spread in the time of flight associated with energy deficits by allowing adjustment of the ions’ flight distance proportionally to their incoming energy.

Delay-line detector

A type of particle detector where the particle impact location on the detector’s surface is deduced from the difference in the arrival time of electrical signals at the two ends of a line, that is, a wire. Delay-line detectors typically contain two or three lines to obtain the lateral and vertical coordinates of the impact position, with the signals forming the third line used to disambiguate combinations of signals coming from multiple impacts.

Molecular ions

Ions containing more than one atom (as opposed to atomic ions) that have, overall, lost one or more electrons. Molecular ions are usually metastable, but some are sufficiently long-lived to be detected.

Micro-tip coupon

A support for lift-out specimen preparation, typically made of silicon processed by a reactive ion and/or chemical etching.

Local electrode

A conical microelectrode implemented on the commercial local electrode atom probe (LEAP), positioned approximately 40 μm away from the specimen, enabling a strong localized increase in the electric field at the apex of the specimen. The implementation of such microelectrodes enabled mounting multiple specimens at once into the instrument and, then, analysis in succession.

Mass peak ranging

The definition of the lower and higher mass to charge values of each individual mass peak in the mass spectrum to associate the mass to charge with one element or a combination of atoms from one or multiple elements.

Image compression

An atom probe-specific term describing the angular compression associated with the ion projection; that is, the ratio of the crystallographic angle to the imaged angle.

Quasi-stereographic projection

A model of point projection of a sphere onto a plane, which is bijective and preserves angles but neither distances nor areas. The standard projection has the projection point and the projection plane diametrically opposed. In a quasi-stereographic projection, this is not necessarily the case.

Voxelization

In an atom probe, the conversion of the three-dimensional point cloud into an array or grid of volumetric elements containing a certain number of atoms of a certain size. Following voxelization, the number of atoms of each defined species can be used to calculate a local composition, and is usually subject to a smoothing process termed delocalization.

Iso-surface

A three-dimensional surface representing points of a given threshold value of composition, concentration or density within the 3D point cloud. The iso-surface is built from the grid of voxels and, hence, subject to the delocalization.

Iso-concentration

The concentration is a quantity per unit volume expressed in atoms per cubic nanometre, for instance, equivalent to a density. Owing to trajectory aberrations and reconstruction issues, volume estimations from reconstructed atom probe data are typically not precise.

Interfacial excess

The number of excess atoms of a certain species per unit area of an interface.

Round robin experiments

A set of interlaboratory measurements independently performed that allows for direct comparison of analyses and results, and that can help guide establishing best practice.

Rayleigh criterion

The shortest distance below which the diffraction-limited image of two point sources can no longer be separated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gault, B., Chiaramonti, A., Cojocaru-Mirédin, O. et al. Atom probe tomography. Nat Rev Methods Primers 1, 51 (2021). https://doi.org/10.1038/s43586-021-00047-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-021-00047-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing