Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allylic C(sp3)–H arylation of olefins via ternary catalysis

Abstract

Transforming C(sp3)–H bonds efficiently and selectively into C(sp3)–C(sp3) or C(sp3)–X bonds is a highly relevant task. The direct arylation of allylic C(sp3)–H bonds provides an elegant method for the formation of unconjugated aryl-substituted olefins. Although both ionic- and radical-based transition metal catalysis has been applied to achieve this transformation, numerous challenges remain. The requirement for persistent radical coupling partners, moderate selectivity and the need for tri- or tetrasubstituted olefins have limited the generality of existing methods. Now we report a ternary catalytic method that combines organic photoredox, hydrogen atom transfer and nickel catalysis, and can directly arylate allylic C(sp3)–H bonds of readily available olefins. This process operates under mild conditions and exhibits a remarkable reaction scope in both aryl halide and olefin coupling partners. Mechanistic experiments, coupled with density functional theory calculations of Ni-oxidation states and reaction energetics allowed the elucidation of a ternary catalytic cycle and the origin of regioselectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct allylic C(sp3)–H arylation, state-of-the-art and design of this work.
Fig. 2: Reaction components and optimization.
Fig. 3: Reaction scope.
Fig. 4: Reaction scope with regard to allylic substrates.
Fig. 5: Mechanistic experiments.
Fig. 6: DFT analysis of the allylic arylation reaction.
Fig. 7: DFT analysis of the regio-determining transition state and thermodynamics of products.

Similar content being viewed by others

Data availability

Materials and methods, detailed optimization studies, experimental procedures, mechanistic studies and copies of the NMR spectra are available in the Supplementary Information. NMR data in a mnova file format and gas chromatography–mass spectroscopy data for KIE analysis are available at Zenodo at https://zenodo.org/record/5614753#.Yaq8DN8kGUk, under the Creative Commons Attribution 4.0 International license.

References

  1. Trost, B. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Wender, P. A. & Miller, B. L. Synthesis at the molecular frontier. Nature 460, 197–201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trost, B. M. & Crawley, M. L. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem. Rev. 103, 2921–2944 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, Q. et al. Iridium-catalyzed asymmetric allylic substitution reactions. Chem. Rev. 119, 1855–1969 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Dutta, S., Bhattacharya, T., Werz, D. B. & Maiti, D. Transition-metal-catalyzed C–H allylation reactions. Chem 7, 555–605 (2021).

    Article  CAS  Google Scholar 

  6. Wang, P.-S. & Gong, L.-Z. Palladium-catalyzed asymmetric allylic C-H functionalization: mechanism, stereo- and regioselectivities, and synthetic applications. Acc. Chem. Res. 53, 2841–2854 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Bayeh, L. & Tambar, U. K. Catalytic asymmetric intermolecular allylic functionalization of unactivated internal alkenes. ACS Catal. 7, 8533–8543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, Y., Lei, M. & Gong, L. Photocatalytic regio- and stereoselective C(sp3)–H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes. Nat. Catal. 2, 1016–1026 (2019).

    Article  CAS  Google Scholar 

  9. Huang, C. et al. Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. Chem 7, 1244–1257 (2021).

    Article  CAS  Google Scholar 

  10. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Lei, H. & Rovis, T. A site-selective amination catalyst discriminates between nearly identical C–H bonds of unsymmetrical disubstituted alkenes. Nat. Chem. 12, 725–731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ni, G., Zhang, Q.-J., Zheng, Z.-F., Chen, R.-Y. & Yu, D.-Q. 2-arylbenzofuran derivatives from Morus cathayana. J. Nat. Prod. 72, 966–968 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Knölker, H. J. & Reddy, K. R. Isolation and synthesis of biologically active carbazole alkaloids. Chem. Rev. 102, 4303–4427 (2002).

    Article  PubMed  Google Scholar 

  14. Sekine, M., Ilies, L. & Nakamura, E. Iron-catalyzed allylic arylation of olefins via C(sp3)–H activation under mild conditions. Org. Lett. 15, 714–717 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Lerchen, A. et al. Non-directed cross-dehydrogenative (hetero)arylation of allylic C(sp3)−H bonds enabled by C−H activation. Angew. Chem. Int. Ed. 57, 15248–15252 (2018).

    Article  CAS  Google Scholar 

  16. Knecht, T., Pinkert, T., Dalton, T., Lerchen, A. & Glorius, F. CpRhIII-catalyzed allyl–aryl coupling of olefins and arylboron reagents enabled by C(sp3)–H activation. ACS Catal. 9, 1253–1257 (2019).

    Article  CAS  Google Scholar 

  17. Pal, S., Cotard, M., Gérardin, B., Hoarau, C. & Schneider, C. Cu-catalyzed oxidative allylic C–H arylation of inexpensive alkenes with (hetero)aryl boronic acids. Org. Lett. 23, 3130–3135 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Luo, H., Hu, G. & Li, P. Sulfur-mediated allylic C–H arylation, epoxidation, and aziridination. J. Org. Chem. 84, 10569–10578 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, G.-W., Zhou, A.-X., Li, S.-X. & Yang, S.-D. Regio- and stereoselective allylic C–H arylation with electron-deficient arenes by 1,1′-bi-2-naphthol–palladium cooperation. Org. Lett. 16, 3118–3121 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, H., Yang, W., Chen, H., Li, J. & Wu, W. Palladium-catalyzed aerobic oxidative allylic C–H arylation of alkenes with polyfluorobenzenes. Chem. Commun. 50, 7202–7204 (2014).

    Article  CAS  Google Scholar 

  21. Zhang, M.-M., Wang, Y.-N., Lu, L.-Q. & Xiao, W.-J. Light up the transition metal-catalyzed single-electron allylation. Trends Chem. 2, 764–775 (2020).

  22. Huang, H.-M., Bellotti, P. & Glorius, F. Transition metal-catalysed allylic functionalization reactions involving radicals. Chem. Soc. Rev. 49, 6186–6197 (2020).

    Article  PubMed  Google Scholar 

  23. Borg, R. M., Arnold, D. R. & Cameron, T. S. Radical ions in photochemistry. 15. The photosubstitution reaction between dicyanobenzenes and alkyl olefins. Can. J. Chem. 62, 1785–1802 (1984).

    Article  CAS  Google Scholar 

  24. Hoshikawa, T. & Inoue, M. Photoinduced direct 4-pyridination of C(sp3)–H bonds. Chem. Sci. 4, 3118–3123 (2013).

    Article  CAS  Google Scholar 

  25. Cuthbertson, J. D. & MacMillan, D. W. C. The direct arylation of allylic sp3 C–H bonds via organic and photoredox catalysis. Nature 519, 74–77 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanaka, H., Sakai, K., Kawamura, A., Oisaki, K. & Kanai, M. Sulfonamides as new hydrogen atom transfer (HAT) catalysts for photoredox allylic and benzylic C–H arylations. Chem. Commun. 54, 3215–3218 (2018).

    Article  CAS  Google Scholar 

  27. McAtee, R. C., McClain, E. J. & Stephenson, C. R. J. Illuminating photoredox catalysis. Trends Chem. 1, 111–125 (2019).

    Article  CAS  Google Scholar 

  28. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  29. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tellis, J. C. et al. Single-electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3sp2 cross-coupling. Acc. Chem. Res. 49, 1429–1439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, C., Yue, H., Chu, L. & Rueping, M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. Chem. Sci. 11, 4051–4064 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heitz, D. R., Tellis, J. C. & Molander, G. A. Photochemical nickel-catalyzed C–H arylation: synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 138, 12715–12718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shields, B. J. & Doyle, A. G. Direct C(sp3)–H cross coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 138, 12719–12722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kariofillis, S. K. & Doyle, A. G. Synthetic and mechanistic implications of chlorine photoelimination in nickel/photoredox C(sp3)–H cross-coupling. Acc. Chem. Res. 54, 988–1000 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, L. & Rueping, M. Direct cross-coupling of allylic C(sp3)−H bonds with aryl- and vinylbromides by combined nickel and visible-light catalysis. Angew. Chem. Int. Ed. 57, 10333–10337 (2018).

    Article  CAS  Google Scholar 

  36. Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. Alkyl carbon–carbon bond formation by nickel/photoredox cross-coupling. Angew. Chem. Int. Ed. 58, 6152–6163 (2019).

    Article  CAS  Google Scholar 

  37. Sancheti, S. P., Urvashi, Shah, M. P. & Patil, N. T. Ternary catalysis: a stepping stone toward multicatalysis. ACS Catal. 10, 3462–3489 (2020).

    Article  CAS  Google Scholar 

  38. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kato, S. et al. Hybrid catalysis enabling room-temperature hydrogen gas release from N-heterocycles and tetrahydronaphthalenes. J. Am. Chem. Soc. 139, 2204–2207 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Fuse, H., Kojima, M., Mitsunuma, H. & Kanai, M. Acceptorless dehydrogenation of hydrocarbons by noble-metal-free hybrid catalyst system. Org. Lett. 20, 2042–2045 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Fuse, H., Mitsunuma, H. & Kanai, M. Catalytic acceptorless dehydrogenation of aliphatic alcohols. J. Am. Chem. Soc. 142, 4493–4499 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Tanabe, S., Mitsunuma, H. & Kanai, M. Catalytic allylation of aldehydes using unactivated alkenes. J. Am. Chem. Soc. 142, 12374–12381 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Pitzer, L., Sandfort, F., Strieth-Kalthoff, F. & Glorius, F. Carbonyl–olefin cross-metathesis through a visible-light-induced 1,3-diol formation and fragmentation sequence. Angew. Chem. Int. Ed. 57, 16219–16223 (2018).

    Article  CAS  Google Scholar 

  44. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Pitzer, L., Schäfers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed. 58, 8572–8576 (2019).

    Article  CAS  Google Scholar 

  47. Petruncio, G., Shellnutt, Z., Elahi-Mohassel, S., Alishetty, S. & Paige, M. Skipped dienes in natural product synthesis. Nat. Prod. Rep. https://doi.org/10.1039/D1NP00012H (2021).

  48. Song, F. et al. Visible-light-enabled stereodivergent synthesis of E- and Z-configured 1,4-dienes by photoredox/nickel dual catalysis. Angew. Chem. Int. Ed. 59, 177–181 (2020).

    Article  CAS  Google Scholar 

  49. Hamilton, J. Y., Sarlah, D. & Carreira, E. M. Iridium-catalyzed enantioselective allylic vinylation. J. Am. Chem. Soc. 135, 994–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, S., Goldfogel, M. J., Gilbert, M. M. & Weix, D. J. Nickel-catalyzed cross-electrophile coupling of aryl chlorides with primary alkyl chlorides. J. Am. Chem. Soc. 142, 9902–9907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kattamuri, P. V. & West, J. G. Hydrogenation of alkenes via cooperative hydrogen atom transfer. J. Am. Chem. Soc. 142, 19316–19326 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Isrow, D. & Captain, B. Synthesis and reactivity of a transition metal complex containing exclusively TEMPO Ligands: Ni(η2-TEMPO)2. Inorg. Chem. 50, 5864–5866 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Kavarnos, G. J. & Turro, N. J. Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem. Rev. 86, 401–449 (1986).

    Article  CAS  Google Scholar 

  54. Rand, A. W. et al. Dual Catalytic Platform for enabling sp3 α C–H arylation and alkylation of benzamides. ACS Catal. 10, 4671–4676 (2020).

    Article  CAS  Google Scholar 

  55. Shen, Y., Gu, Y. & Martin, R. sp3 C–H arylation and alkylation enabled by the synergy of triplet excited ketones and nickel catalysts. J. Am. Chem. Soc. 140, 12200–12209 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Börjesson, M. et al. Remote sp2 C–H carboxylation via catalytic 1,4-Ni migration with CO2. J. Am. Chem. Soc. 142, 16234–16239 (2020).

    Article  PubMed  Google Scholar 

  57. Cong, F., Lv, X., Day, C. S. & Martin, R. Dual catalytic strategy for forging sp2sp3 and sp3sp3 architectures via β-scission of aliphatic alcohol derivatives. J. Am. Chem. Soc. 142, 20594–20599 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Mega, R. S., Duong, V. K., Noble, A. & Aggarwal, V. K. Decarboxylative conjunctive cross-coupling of vinyl boronic esters using metallaphotoredox catalysis. Angew. Chem. Int. Ed. 59, 4375–4379 (2020).

    Article  CAS  Google Scholar 

  59. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakajima, K., Nojima, S. & Nishibayashi, Y. Nickel- and photoredox-catalyzed cross-coupling reactions of aryl halides with 4-alkyl-1,4-dihydropyridines as formal nucleophilic alkylation reagents. Angew. Chem. Int. Ed. 55, 14106–14110 (2016).

    Article  CAS  Google Scholar 

  63. Yuan, M., Song, Z., Badir, S. O., Molander, G. A. & Gutierrez, O. On the nature of C(sp3)–C(sp2) bond formation in nickel-catalyzed tertiary radical cross-couplings: a case study of Ni/photoredox catalytic cross-coupling of alkyl radicals and aryl halides. J. Am. Chem. Soc. 142, 7225–7234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oderinde, M. S. et al. Highly chemoselective iridium photoredox and nickel catalysis for the cross-coupling of primary aryl amines with aryl halides. Angew. Chem. Int. Ed. 55, 13219–13223 (2016).

    Article  CAS  Google Scholar 

  65. Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B. & Johannes, J. W. Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals. J. Am. Chem. Soc. 138, 1760–1763 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Zhu, C. et al. A multicomponent synthesis of stereodefined olefins via nickel catalysis and single electron/triplet energy transfer. Nat. Catal. 2, 678–687 (2019).

    Article  CAS  Google Scholar 

  67. Cavallo, L. et al. Mechanistic insight into the photoredox–nickel–HAT triple catalyzed arylation and alkylation of α-amino Csp3–H bonds. J. Am. Chem. Soc. 142, 16942–16952 (2020).

    Article  PubMed  Google Scholar 

  68. Marcus, R. A. On the theory of oxidation‐reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was generously supported by the Alexander von Humboldt Foundation (H.-M.H.) and the Deutsche Forschungsgemeinschaft (Leibniz Award, SBF 858), the National Science Foundation (CHE-1764328 to K.N.H.) and Zhejiang University for support of P.-P.C. Calculations were performed on the IDRE Hoffman2 cluster at the University of California, Los Angeles, and the Vienna Scientific Cluster. We thank J. Cornella (Max-Planck-Institut für Kohlenforschung) for the generous donation of a sample of Ni(Fstb)3 and X. Zhang, T. Dalton, J. Li, J. Ma, H. Wang and T. Hu (all University of Münster) for helpful discussions and experimental support.

Author information

Authors and Affiliations

Authors

Contributions

H.-M.H and F.G. conceived the project. H.-M.H and P.B. performed all of the experiments and analysed all the data. P.-P.C. performed the DFT calculations. H.-M.H, P.B., P.-P.C., K.N.H. and F.G. supervised the research and co-wrote the manuscript.

Corresponding authors

Correspondence to Kendall N. Houk or Frank Glorius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Gabriel dos Passos Gomes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and discussion

Supplementary Data 1

Computational data.

Supplementary Data 2

UV-vis data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HM., Bellotti, P., Chen, PP. et al. Allylic C(sp3)–H arylation of olefins via ternary catalysis. Nat Synth 1, 59–68 (2022). https://doi.org/10.1038/s44160-021-00006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00006-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing