Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Artificial intelligence in surgery

Abstract

Artificial intelligence (AI) is rapidly emerging in healthcare, yet applications in surgery remain relatively nascent. Here we review the integration of AI in the field of surgery, centering our discussion on multifaceted improvements in surgical care in the preoperative, intraoperative and postoperative space. The emergence of foundation model architectures, wearable technologies and improving surgical data infrastructures is enabling rapid advances in AI interventions and utility. We discuss how maturing AI methods hold the potential to improve patient outcomes, facilitate surgical education and optimize surgical care. We review the current applications of deep learning approaches and outline a vision for future advances through multimodal foundation models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integration of novel AI-powered digital interventions in the intraoperative setting.
Fig. 2: Sensor inputs for peri- and postoperative continuous monitoring.

Similar content being viewed by others

References

  1. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Wallace, M. B. et al. Impact of artificial intelligence on miss rate of colorectal neoplasia. Gastroenterology 163, 295–304.e5 (2022).

    Article  PubMed  Google Scholar 

  3. Sharma, P. & Hassan, C. Artificial intelligence and deep learning for upper gastrointestinal neoplasia. Gastroenterology 162, 1056–1066 (2022).

    Article  PubMed  Google Scholar 

  4. Aerts, H. J. W. L. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2, 1636–1642 (2016).

    Article  PubMed  Google Scholar 

  5. Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. COVIDSurg Collaborative.Projecting COVID-19 disruption to elective surgery.Lancet 399, 233–234 (2022).

    Article  CAS  Google Scholar 

  7. Weiser, T. G. et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet 385, S11 (2015).

    Article  PubMed  Google Scholar 

  8. Meara, J. G. & Greenberg, S. L. M. The Lancet Commission on Global Surgery Global surgery 2030: evidence and solutions for achieving health, welfare and economic development. Surgery 157, 834–835 (2015).

    Article  PubMed  Google Scholar 

  9. Alkire, B. C. et al. Global access to surgical care: a modelling study. Lancet Glob. Health 3, e316–e323 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grönroos-Korhonen, M. T. et al. Failure to rescue after reoperation for major complications of elective and emergency colorectal surgery: a population-based multicenter cohort study. Surgery 172, 1076–1084 (2022).

    Article  PubMed  Google Scholar 

  11. GlobalSurg Collaborative. Mortality of emergency abdominal surgery in high-, middle- and low-income countries.Br. J. Surg. 103, 971–988 (2016).

    Article  Google Scholar 

  12. GlobalSurg Collaborative & National Institute for Health Research Global Health Research Unit on Global Surgery. Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries. Lancet 397, 387–397 (2021).

  13. GlobalSurg Collaborative. Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study. Lancet Infect Dis. 18, 516–525 (2018).

  14. Paton, F. et al. Effectiveness and implementation of enhanced recovery after surgery programmes: a rapid evidence synthesis. BMJ Open 4, e005015 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vedula, S. S. & Hager, G. D. Surgical data science: the new knowledge domain. Innov. Surg. Sci. 2, 109–121 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Kaddour J. et al. Challenges and applications of large language models. Preprint at https://arxiv.org/abs/2307.10169 (2023).

  17. Bonde, A. et al. Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study. Lancet Digit. Health 3, e471–e485 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Gögenur, I. Introducing machine learning-based prediction models in the perioperative setting. Br. J. Surg. 110, 533–535 (2023).

    Article  PubMed  Google Scholar 

  19. Mascagni, P. et al. Computer vision in surgery: from potential to clinical value. NPJ Digit. Med. 5, 163 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wijnberge, M. et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial. J. Am. Med. Assoc. 323, 1052–1060 (2020).

    Article  Google Scholar 

  21. Kalidasan, V. et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021).

    Article  PubMed  Google Scholar 

  22. Fazlollahi, A. M. et al. Effect of artificial intelligence tutoring vs expert instruction on learning simulated surgical skills among medical students: a randomized clinical trial. JAMA Netw. Open 5, e2149008 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wells, C. I. et al. Wearable devices to monitor recovery after abdominal surgery: scoping review. BJS Open 6, zrac031 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dawes, A. J., Lin, A. Y., Varghese, C., Russell, M. M. & Lin, A. Y. Mobile health technology for remote home monitoring after surgery: a meta-analysis. Br. J. Surg. 108, 1304–1314 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Loftus, T. J. et al. Artificial intelligence and surgical decision-making. JAMA Surg. 155, 148–158 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Safavi, K. C. et al. Development and validation of a machine learning model to aid discharge processes for inpatient surgical care. JAMA Netw. Open 2, e1917221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dundar, T. T. et al. Machine learning-based surgical planning for neurosurgery: artificial intelligent approaches to the cranium. Front. Surg. 9, 863633 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sadeghi, A. H. et al. Virtual reality and artificial intelligence for 3-dimensional planning of lung segmentectomies. JTCVS Tech. 7, 309–321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, T. et al. RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast disease. Cell Rep. Med. 4, 101131 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korfiatis, P. et al. Automated artificial intelligence model trained on a large data set can detect pancreas cancer on diagnostic computed tomography scans as well as visually occult preinvasive cancer on prediagnostic computed tomography scans. Gastroenterology 165, 1533–1546.e4 (2023).

    Article  PubMed  Google Scholar 

  31. Maier-Hein, L. et al. Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1, 691–696 (2017).

    Article  PubMed  Google Scholar 

  32. Verma, A., Agarwal, G., Gupta, A. K. & Sain, M. Novel hybrid intelligent secure cloud Internet of things based disease prediction and diagnosis. Electronics 10, 3013 (2021).

    Article  CAS  Google Scholar 

  33. Ghaffar Nia, N., Kaplanoglu, E. & Nasab, A.Evaluation of artificial intelligence techniques in disease diagnosis and prediction.Discov. Artif. Intell. 3, 5 (2023).

    Article  Google Scholar 

  34. Gong, D. et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. Lancet Gastroenterol. Hepatol. 5, 352–361 (2020).

    Article  PubMed  Google Scholar 

  35. Wang, P. et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol. Hepatol. 5, 343–351 (2020).

    Article  PubMed  Google Scholar 

  36. Kiani, A. et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Digit. Med. 3, 23 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dias, R. & Torkamani, A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 11, 70 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Javanmard-Emamghissi, H. & Moug, S. J. The virtual uncertainty of futility in emergency surgery. Br. J. Surg. 109, 1184–1185 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ali, R. et al. Bridging the literacy gap for surgical consents: an AI–human expert collaborative approach. NPJ Digit. Med. 7, 63 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vernooij, J. E. M. et al. Performance and usability of pre-operative prediction models for 30-day peri-operative mortality risk: a systematic review. Anaesthesia 78, 607–619 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Wynants, L. et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. Br. Med. J. 369, m1328 (2020).

    Article  Google Scholar 

  44. Finlayson, S. G., Beam, A. L. & van Smeden, M. Machine learning and statistics in clinical research articles—moving past the false dichotomy. JAMA Pediatr. 177, 448–450 (2023).

    Article  PubMed  Google Scholar 

  45. Chiew, C. J., Liu, N., Wong, T. H., Sim, Y. E. & Abdullah, H. R. Utilizing machine learning methods for preoperative prediction of postsurgical mortality and intensive care unit admission. Ann. Surg. 272, 1133–1139 (2020).

    Article  PubMed  Google Scholar 

  46. COVIDSurg Collaborative. Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score. Br. J. Surg. 108, 1274–1292 (2021).

    Article  Google Scholar 

  47. Maurer, L. R. et al. Validation of the Al-based Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) calculator in patients 65 years and older. Ann. Surg. 277, e8–e15 (2023).

    Article  PubMed  Google Scholar 

  48. El Hechi, M. W. et al. Validation of the artificial intelligence-based Predictive Optimal Trees in Emergency Surgery Risk (POTTER) calculator in emergency general surgery and emergency laparotomy patients. J. Am. Coll. Surg. 232, 912–919.e1 (2021).

    Article  PubMed  Google Scholar 

  49. Gebran, A. et al. POTTER-ICU: an artificial intelligence smartphone-accessible tool to predict the need for intensive care after emergency surgery. Surgery 172, 470–475 (2022).

    Article  PubMed  Google Scholar 

  50. Bihorac, A. et al. MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery. Ann. Surg. 269, 652–662 (2019).

    Article  PubMed  Google Scholar 

  51. Ren, Y. et al. Performance of a machine learning algorithm using electronic health record data to predict postoperative complications and report on a mobile platform. JAMA Netw. Open 5, e2211973 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bertsimas, D., Dunn, J., Velmahos, G. C. & Kaafarani, H. M. A. Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) calculator. Ann. Surg. 268, 574–583 (2018).

    Article  PubMed  Google Scholar 

  53. El Moheb, M. et al. Artificial intelligence versus surgeon gestalt in predicting risk of emergency general surgery. J. Trauma Acute Care Surg. 95, 565–572 (2023).

    Article  PubMed  Google Scholar 

  54. Jalali, A. et al. Deep learning for improved risk prediction in surgical outcomes. Sci. Rep. 10, 9289 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han R. et al. Randomized controlled trials evaluating AI in clinical practice: a scoping evaluation. Preprint at bioRxiv https://doi.org/10.1101/2023.09.12.23295381 (2023).

  56. Li, B. et al. Machine learning in vascular surgery: a systematic review and critical appraisal. NPJ Digit. Med. 5, 7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Artificial intelligence assists surgeons’ decision making. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/record/NCT04999007 (2024).

  58. Liu, X., Cruz Rivera, S., Moher, D., Calvert, M. J. & Denniston, A. K., SPIRIT-AI & CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collins, G. S. et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 11, e048008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Heus, P. et al. Uniformity in measuring adherence to reporting guidelines: the example of TRIPOD for assessing completeness of reporting of prediction model studies. BMJ Open 9, e025611 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vasey, B. et al. Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Br. Med. J. 377, e070904 (2022).

    Article  Google Scholar 

  62. Cacciamani, G. E. et al. PRISMA AI reporting guidelines for systematic reviews and meta-analyses on AI in healthcare. Nat. Med. 29, 14–15 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Wynter-Blyth, V. & Moorthy, K. Prehabilitation: preparing patients for surgery. Br. Med. J. 358, j3702 (2017).

    Article  Google Scholar 

  64. Topol, E. J. As artificial intelligence goes multimodal, medical applications multiply. Science 381, adk6139 (2023).

    Article  PubMed  Google Scholar 

  65. Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Yao, X. et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat. Med. 27, 815–819 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Attia, Z. I. et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 25, 70–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Ouyang, D. et al. Electrocardiographic deep learning for predicting post-procedural mortality: a model development and validation study. Lancet Digit. Health 6, e70–e78 (2024).

    Article  CAS  PubMed  Google Scholar 

  69. Kung, T. H. et al. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLoS Digit. Health 2, e0000198 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Matias Y. & Corrado, G. Our latest health AI research updates. Google Blog https://blog.google/technology/health/ai-llm-medpalm-research-thecheckup/ (2023).

  71. Decker, H. et al. Large language model-based chatbot vs surgeon-generated informed consent documentation for common procedures. JAMA Netw. Open 6, e2336997 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ayers, J. W. et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern. Med. 183, 589–596 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ke, Y. et al. Development and testing of retrieval augmented generation in large language models—a case study report. Preprint at https://arxiv.org/abs/2402.01733 (2024).

  74. Perry, A. AI will never convey the essence of human empathy. Nat. Hum. Behav. 7, 1808–1809 (2023).

    Article  PubMed  Google Scholar 

  75. Loveys, K., Sagar, M., Pickering, I. & Broadbent, E. A digital human for delivering a remote loneliness and stress intervention to at-risk younger and older adults during the COVID-19 pandemic: randomized pilot trial. JMIR Ment. Health 8, e31586 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Introducing GPTs. OpenAI https://openai.com/blog/introducing-gpts (2023).

  77. How assistants work. OpenAI https://platform.openai.com/docs/assistants/how-it-works (2023).

  78. Ouyang, H. Your next hospital bed might be at home. The New York Times https://www.nytimes.com/2023/01/26/magazine/hospital-at-home.html (2023).

  79. Temple-Oberle, C., Yakaback, S., Webb, C., Assadzadeh, G. E. & Nelson, G. Effect of smartphone app postoperative home monitoring after oncologic surgery on quality of recovery: a randomized clinical trial. JAMA Surg. 158, 693–699 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. März, K. et al. Toward knowledge-based liver surgery: holistic information processing for surgical decision support. Int. J. Comput. Assist. Radiol. Surg. 10, 749–759 (2015).

    Article  PubMed  Google Scholar 

  81. Thirunavukarasu, A. J. et al. Trialling a large language model (ChatGPT) in general practice with the applied knowledge test: observational study demonstrating opportunities and limitations in primary care. JMIR Med. Educ. 9, e46599 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Glaese, A. et al. Improving alignment of dialogue agents via targeted human judgements. Preprint at https://arxiv.org/abs/2209.14375 (2022).

  83. Johri, S. et al. Testing the limits of language models: a conversational framework for medical AI assessment. Preprint at https://www.medrxiv.org/content/10.1101/2023.09.12.23295399v1 (2023).

  84. Cacciamani, G. E., Collins, G. S. & Gill, I. S. ChatGPT: standard reporting guidelines for responsible use. Nature 618, 238 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Haver, H. L. et al. Appropriateness of breast cancer prevention and screening recommendations provided by ChatGPT. Radiology 307, e230424 (2023).

    Article  PubMed  Google Scholar 

  86. Birkmeyer, J. D. et al. Surgical skill and complication rates after bariatric surgery. N. Engl. J. Med. 369, 1434–1442 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, J. et al. Rapid and accurate intraoperative pathological diagnosis by artificial intelligence with deep learning technology. Med. Hypotheses 107, 98–99 (2017).

    Article  PubMed  Google Scholar 

  88. Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 622, 842–849 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mascagni, P. et al. Early-stage clinical evaluation of real-time artificial intelligence assistance for laparoscopic cholecystectomy. Br. J. Surg. 111, znad353 (2023).

    Article  Google Scholar 

  90. Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Deciding advantageously before knowing the advantageous strategy. Science 275, 1293–1295 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Van der Ven, W. H. et al. One of the first validations of an artificial intelligence algorithm for clinical use: the impact on intraoperative hypotension prediction and clinical decision-making. Surgery 169, 1300–1303 (2021).

    Article  PubMed  Google Scholar 

  93. Hatib, F. et al. Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology 129, 663–674 (2018).

    Article  PubMed  Google Scholar 

  94. Schneck, E. et al. Hypotension prediction index based protocolized haemodynamic management reduces the incidence and duration of intraoperative hypotension in primary total hip arthroplasty: a single centre feasibility randomised blinded prospective interventional trial. J. Clin. Monit. Comput. 34, 1149–1158 (2020).

    Article  PubMed  Google Scholar 

  95. Aklilu, J. G. et al. Artificial intelligence identifies factors associated with blood loss and surgical experience in cholecystectomy. NEJM AI 1, AIoa2300088 (2024).

    Article  Google Scholar 

  96. Jung, J. J., Jüni, P., Lebovic, G. & Grantcharov, T. First-year analysis of the operating room black box study. Ann. Surg. 271, 122–127 (2020).

    Article  PubMed  Google Scholar 

  97. Al Abbas, A. I. et al. The operating room black box: understanding adherence to surgical checklists. Ann. Surg. 276, 995–1001 (2022).

    Article  PubMed  Google Scholar 

  98. Seo, S. et al. Towards an AI coach to infer team mental model alignment in healthcare. IEEE Conf. Cogn. Comput. Asp. Situat. Manag. 2021, 39–44 (2021).

    PubMed  PubMed Central  Google Scholar 

  99. Agha, R. A., Fowler, A. J. & Sevdalis, N. The role of non-technical skills in surgery. Ann. Med Surg. 4, 422–427 (2015).

    Article  Google Scholar 

  100. Gillespie, B. M. et al. Correlates of non-technical skills in surgery: a prospective study. BMJ Open 7, e014480 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Farrugia, G. Transforming health care through platforms. LinkedIn https://www.linkedin.com/pulse/transforming-health-care-through-platforms-gianrico-farrugia-m-d-/ (2023).

  102. Feasibility and utility of artificial intelligence (AI)/machine learning (ML)—driven advanced intraoperative visualization and identification of critical anatomic structures and procedural phases in laparoscopic cholecystectomy. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT05775133?term=artificial+intelligence,+surgery&type=Intr&draw=2&rank=4 (2024).

  103. Zia, A., Hung, A., Essa, I. & Jarc, A. Surgical activity recognition in robot-assisted radical prostatectomy using deep learning. In Medical Image Computing and Computer Assisted InterventionMICCAI 2018 273–280 (Springer International Publishing, 2018).

  104. Luongo, F., Hakim, R., Nguyen, J. H., Anandkumar, A. & Hung, A. J. Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery. Surgery 169, 1240–1244 (2021).

    Article  PubMed  Google Scholar 

  105. Funke, I. et al. Using 3D convolutional neural networks to learn spatiotemporal features for automatic surgical gesture recognition in video. In Medical Image Computing and Computer Assisted InterventionMICCAI 2019 467–475 (Springer International Publishing, 2019).

  106. Lavanchy, J. L. et al. Automation of surgical skill assessment using a three-stage machine learning algorithm. Sci. Rep. 11, 5197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Goodman E. D. et al. A real-time spatiotemporal AI model analyzes skill in open surgical videos. Preprint at https://arxiv.org/abs/2112.07219 (2021).

  108. Kiyasseh, D. et al. A vision transformer for decoding surgeon activity from surgical videos. Nat. Biomed. Eng. 7, 780–796 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Goyal, P. et al. Vision models are more robust and fair when pretrained on uncurated images without supervision. Preprint at https://arxiv.org/abs/2202.08360 (2022).

  110. Chatterjee, S., Bhattacharya, M., Pal, S., Lee, S.-S. & Chakraborty, C. ChatGPT and large language models in orthopedics: from education and surgery to research. J. Exp. Orthop. 10, 128 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kim, J. S. et al. Can natural language processing and artificial intelligence automate the generation of billing codes from operative note dictations? Glob. Spine J. 13, 1946–1955 (2023).

    Article  Google Scholar 

  112. Takeuchi, M. et al. Automated surgical-phase recognition for robot-assisted minimally invasive esophagectomy using artificial intelligence. Ann. Surg. Oncol. 29, 6847–6855 (2022).

    Article  PubMed  Google Scholar 

  113. Marcus, H. J. et al. The IDEAL framework for surgical robotics: development, comparative evaluation and long-term monitoring. Nat. Med. 30, 61–75 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Yip, M. et al. Artificial intelligence meets medical robotics. Science 381, 141–146 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Shademan, A. et al. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 8, 337ra64 (2016).

    Article  PubMed  Google Scholar 

  116. Hu, Y.-Y. et al. Complementing operating room teaching with video-based coaching. JAMA Surg. 152, 318–325 (2017).

    Article  PubMed  Google Scholar 

  117. Bonrath, E. M., Dedy, N. J., Gordon, L. E. & Grantcharov, T. P. Comprehensive surgical coaching enhances surgical skill in the operating room: a randomized controlled trial. Ann. Surg. 262, 205–212 (2015).

    Article  PubMed  Google Scholar 

  118. Goodman, E. D. et al. Analyzing surgical technique in diverse open surgical videos with multitask machine learning.JAMA Surg. 159, 185–192 (2024).

    Article  PubMed  Google Scholar 

  119. Levin, M., McKechnie, T., Khalid, S., Grantcharov, T. P. & Goldenberg, M. Automated methods of technical skill assessment in surgery: a systematic review. J. Surg. Educ. 76, 1629–1639 (2019).

    Article  PubMed  Google Scholar 

  120. Lam, K. et al. Machine learning for technical skill assessment in surgery: a systematic review. NPJ Digit. Med. 5, 24 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kiyasseh, D. et al. A multi-institutional study using artificial intelligence to provide reliable and fair feedback to surgeons. Commun. Med. 3, 42 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kiyasseh, D. et al. Human visual explanations mitigate bias in AI-based assessment of surgeon skills. NPJ Digit. Med. 6, 54 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fazlollahi, A. M. et al. AI in surgical curriculum design and unintended outcomes for technical competencies in simulation training. JAMA Netw. Open 6, e2334658 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Artificial intelligence augmented training in skin cancer diagnostics for general practitioners (AISC-GP). ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT04576416 (2024).

  125. Testing the efficacy of an artificial intelligence real-time coaching system in comparison to in person expert instruction in surgical simulation training of medical students—a randomized controlled trial. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05168150 (2024).

  126. Knight, S. R. et al. Mobile devices and wearable technology for measuring patient outcomes after surgery: a systematic review. NPJ Digit. Med. 4, 157 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. A clinical trial of the use of remote heart rhythm monitoring with a smartphone after cardiac surgery (SURGICAL-AF 2) ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT05509517?term=artificial+intelligence,+surgery&recrs=e&type=Intr&draw=2&rank=14 (2024).

  128. Sessler, D. I. & Saugel, B. Beyond ‘failure to rescue’: the time has come for continuous ward monitoring. Br. J. Anaesth. 122, 304–306 (2019).

    Article  PubMed  Google Scholar 

  129. Xu, W. et al. Continuous wireless postoperative monitoring using wearable devices: further device innovation is needed. Crit. Care 25, 394 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bellini, V. et al. Machine learning in perioperative medicine: a systematic review. J. Anesth. Analg. Crit. Care 2, 2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Junaid, M., Ali, S., Eid, F., El-Sappagh, S. & Abuhmed, T. Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson’s disease. Comput. Methods Prog. Biomed. 234, 107495 (2023).

    Article  Google Scholar 

  132. Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lu, S.-H. et al. Multimodal sensing and therapeutic systems for wound healing and management: a review. Sens. Actuators Rep. 4, 100075 (2022).

    Article  Google Scholar 

  134. Anthis, A. H. C. et al. Modular stimuli-responsive hydrogel sealants for early gastrointestinal leak detection and containment. Nat. Commun. 13, 7311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. NIHR Global Health Research Unit on Global Surgery & GlobalSurg Collaborative Use of telemedicine for postdischarge assessment of the surgical wound: international cohort study, and systematic review with meta-analysis. Ann. Surg. 277, e1331–e1347 (2023).

  136. McLean, K. A. et al. Evaluation of remote digital postoperative wound monitoring in routine surgical practice. NPJ Digit. Med. 6, 85 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Savage, N. Sibel Health: designing vital-sign sensors for delicate skin. Nature https://doi.org/10.1038/d41586-020-01806-7 (2020).

  138. Callcut, R. A. et al. External validation of a novel signature of illness in continuous cardiorespiratory monitoring to detect early respiratory deterioration of ICU patients. Physiol. Meas. 42, 095006 (2021).

    Article  Google Scholar 

  139. Shickel, B. et al. Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks. Sci. Rep. 13, 1224 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhu, Y. et al. Prompting large language models for zero-shot clinical prediction with structured longitudinal electronic health record data. Preprint at https://arxiv.org/abs/2402.01713 (2024).

  141. Xu, X. et al. A deep learning model for prediction of post hepatectomy liver failure after hemihepatectomy using preoperative contrast-enhanced computed tomography: a retrospective study. Front. Med. 10, 1154314 (2023).

    Article  Google Scholar 

  142. Bhasker, N. et al. Prediction of clinically relevant postoperative pancreatic fistula using radiomic features and preoperative data. Sci. Rep. 13, 7506 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ingwersen, E. W. et al. Radiomics preoperative-Fistula Risk Score (RAD-FRS) for pancreatoduodenectomy: development and external validation. BJS Open 7, zrad100 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Greijdanus, N. G. et al. Stoma-free survival after rectal cancer resection with anastomotic leakage: development and validation of a prediction model in a large international cohort. Ann. Surg. 278, 772–780 (2023).

    Article  PubMed  Google Scholar 

  145. Wells, C. I. et al. “Failure to rescue” following colorectal cancer resection: variation and improvements in a national study of postoperative mortality. Ann. Surg. 278, 87–95 (2022).

    Article  PubMed  Google Scholar 

  146. Smits, F. J. et al. Algorithm-based care versus usual care for the early recognition and management of complications after pancreatic resection in the Netherlands: an open-label, nationwide, stepped-wedge cluster-randomised trial.Lancet 399, 1867–1875 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Nepogodiev, D., Martin, J., Biccard, B., Makupe, A. & Bhangu, A. Global burden of postoperative death. Lancet 393, 401 (2019).

    Article  PubMed  Google Scholar 

  148. Dugan, R. E. & Gabriel, K. J. Changing the business of breakthroughs. Issues Sci. Technol. 38, 70–74 (2022).

    Google Scholar 

  149. Song, Y. et al. 3D-printed epifluidic electronic skin for machine learning-powered multimodal health surveillance. Sci. Adv. 9, eadi6492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kim, S., Brooks, A. K. & Groban, L. Preoperative assessment of the older surgical patient: honing in on geriatric syndromes. Clin. Inter. Aging 10, 13–27 (2015).

    Google Scholar 

  151. Kim, K. M., Yefimova, M., Lin, F. V., Jopling, J. K. & Hansen, E. N. A home-recovery surgical care model using AI-driven measures of activities of daily living. NEJM Catal. Innov. Care Deliv. (2022).

  152. Modelling and AI using sensor data to personalise rehabilitation following joint replacement (MAPREHAB). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04289025 (2024).

  153. Chen, E., Prakash, S., Janapa Reddi, V., Kim, D. & Rajpurkar, P. A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01115-0 (2023).

  154. McLean, K. A. et al. Readiness for implementation of novel digital health interventions for postoperative monitoring: a systematic review and clinical innovation network analysis. Lancet Digit. Health 5, e295–e315 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Bilbro, N. A. et al. The IDEAL reporting guidelines: a Delphi consensus statement stage specific recommendations for reporting the evaluation of surgical innovation. Ann. Surg. 273, 82–85 (2021).

    Article  PubMed  Google Scholar 

  156. Skivington, K. et al. A new framework for developing and evaluating complex interventions: update of Medical Research Council guidance. Br. Med. J. 374, n2061 (2021).

    Article  Google Scholar 

  157. Horton, R. Surgical research or comic opera: questions, but few answers. Lancet 347, 984–985 (1996).

    Article  CAS  PubMed  Google Scholar 

  158. Bagenal, J. et al. Surgical research-comic opera no more. Lancet 402, 86–88 (2023).

    Article  PubMed  Google Scholar 

  159. Saeidi, H. et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci. Robot 7, eabj2908 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Olavarria, O. A. et al. Robotic versus laparoscopic ventral hernia repair: multicenter, blinded randomized controlled trial. Br. Med. J. 370, m2457 (2020).

    Article  Google Scholar 

  161. Kawka, M., Fong, Y. & Gall, T. M. H. Laparoscopic versus robotic abdominal and pelvic surgery: a systematic review of randomised controlled trials. Surg. Endosc. 37, 6672–6681 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Maier-Hein, L. et al. Surgical data science—from concepts toward clinical translation. Med. Image Anal. 76, 102306 (2022).

    Article  PubMed  Google Scholar 

  163. Janssen, B. V., Kazemier, G. & Besselink, M. G. The use of ChatGPT and other large language models in surgical science. BJS Open 7, zrad032 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T. J. & Zou, J. A visual-language foundation model for pathology image analysis using medical Twitter. Nat. Med. 29, 2307–2316 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Sandal, L. F. et al. Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. JAMA Intern. Med. 181, 1288–1296 (2021).

    Article  PubMed  Google Scholar 

  166. Strömblad, C. T. et al. Effect of a predictive model on planned surgical duration accuracy, patient wait time, and use of presurgical resources: a randomized clinical trial. JAMA Surg. 156, 315–321 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Auloge, P. et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial. Eur. Spine J. 29, 1580–1589 (2020).

    Article  PubMed  Google Scholar 

  168. Tsoumpa, M. et al. The use of the Hypotension Prediction Index integrated in an algorithm of goal directed hemodynamic treatment during moderate and high-risk surgery. J. Clin. Med. 10, 5884 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Garrow, C. R. et al. Machine learning for surgical phase recognition. Ann. Surg. 273, 684–693 (2021).

    Article  PubMed  Google Scholar 

  170. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image generation with CLIP latents. Preprint at https://arxiv.org/abs/2204.06125 (2022).

  171. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems 30 (NIPS, 2017).

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.V., E.M.H., G.O.G. and E.J.T. conceived of, planned and drafted the article.

Corresponding author

Correspondence to Eric J. Topol.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Andrew Hung, Hani Marcus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, C., Harrison, E.M., O’Grady, G. et al. Artificial intelligence in surgery. Nat Med 30, 1257–1268 (2024). https://doi.org/10.1038/s41591-024-02970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-024-02970-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research