Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exotic clasts in Chang’e-5 regolith indicative of unexplored terrane on the Moon

Abstract

The 2-Gyr-old Chang’e-5 samples are the youngest lunar basaltic regolith returned to Earth and can provide information on the lithological diversity and regolith gardening processes at young mare regions on the Moon over a hitherto unexplored time window. Here we study the lithology and composition of over 3,000 Chang’e-5 regolith particles less than 2 mm in size and identify 7 exotic igneous clasts: a high-Ti vitrophyric fragment, a low-Ti basalt, an olivine-pyroxenite, a magnesian anorthosite, an evolved lithology, a Mg-rich olivine fragment and a pyroclastic glass bead. We associate them with impact-ejected materials from other regions of the Moon, over 50–400 km away from the Chang’e-5 mare unit. In particular, the pyroclastic bead records a volcanic eruption on the Moon with unique chemical composition, suggesting the presence of additional and yet-unrecognized lunar volcanic eruptions. The significantly lower amount of exotic material in the Chang’e-5 samples (~0.2%) with respect to expectations (~10–20%) might indicate that current modelling of impact ejecta needs to be revisited for young lunar geological units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BSE images of exotic igneous clasts (Clast-HT, Clast-LT and Clast-OP) recognized in Chang’e-5 regolith.
Fig. 2: BSE images of exotic igneous clasts (Clast-AN, Clast-EL and Clast-OF) recognized in Chang’e-5 regolith.
Fig. 3: Mineral composition of the exotic igneous clasts in Chang’e-5 regolith.
Fig. 4: Bulk-clast composition of the exotic igneous clasts in Chang’e-5 regolith.
Fig. 5: The regional geological context and origin of the exotic igneous clasts in Chang’e-5 regolith.

Similar content being viewed by others

Data availability

The data resulting from this study are provided in the Article and Supporting Information. LROC WAC data and TiO2 abundance (wt%) data were downloaded from the Planetary Data System (https://planetarymaps.usgs.gov/mosaic/Lunar_LRO_LROC-WAC_Mosaic_global_100m_June2013.tif; http://pds.lroc.asu.edu/data/LRO-L-LROC-5-RDR-V1.0/LROLRC_2001/DATA/SDP/WAC_TIO2/).

References

  1. Li, C. et al. Characteristics of the lunar samples returned by the Chang’e-5 mission. Natl Sci. Rev. 9, nwab188 (2022).

    Article  MathSciNet  Google Scholar 

  2. Qian, Y. et al. China’s Chang’e-5 landing site: geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 561, 116855 (2021).

    Article  Google Scholar 

  3. Che, X. et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science 374, 887–890 (2021).

    Article  ADS  Google Scholar 

  4. Li, Q. L. et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).

    Article  ADS  Google Scholar 

  5. Vaniman, D., Dietrich, J., Taylor, G. J. & Heiken, G. in Lunar Sourcebook, A User’s Guide to the Moon 5–26 (1991).

  6. Qian, Y. et al. Copernican‐aged (<200 Ma) impact ejecta at the Chang’e‐5 landing site: statistical evidence from crater morphology, morphometry, and degradation models. Geophys. Res. Lett. 48, e2021GL095341 (2021).

    Article  ADS  Google Scholar 

  7. Xie, M., Xiao, Z., Zhang, X. & Xu, A. The provenance of regolith at the Chang’e‐5 candidate landing region. J. Geophys. Res. Planets 125, e2019JE006112 (2020).

    Article  ADS  Google Scholar 

  8. Liu, T., Michael, G., Zhu, M. H. & Wünnemann, K. Predicted sources of samples returned from Chang’e-5 landing region. Geophys. Res. Lett. 48, e2021GL092434 (2021).

    ADS  Google Scholar 

  9. Papike, J. J., Ryder, G. & Shearer, C. K. in Planetary Materials (ed. Papike, J. J.) Ch. 5 (Mineralogical Society of America, 1998).

  10. Gross, J. & Treiman, A. H. Unique spinel-rich lithology in lunar meteorite ALHA 81005: origin and possible connection to M3 observations of the farside highlands. J. Geophys. Res. Planets 116, E10009 (2011).

    Article  ADS  Google Scholar 

  11. Zeng, X. et al. Multiple lithic clasts in lunar breccia Northwest Africa 7948 and implication for the lithologic components of lunar crust. Meteorit. Planet. Sci. 53, 1030–1050 (2018).

    Article  ADS  Google Scholar 

  12. Zeng, X. et al. Occurrence and implications of secondary olivine veinlets in lunar highland breccia Northwest Africa 11273. Meteorit. Planet. Sci. 55, 36–55 (2020).

    Article  ADS  Google Scholar 

  13. Zeng, X. et al. New evidence for 4.32 Ga ancient silicic volcanism on the Moon. Geophys. Res. Lett. 48, e2021GL092639 (2021).

    Article  ADS  Google Scholar 

  14. Tian, H. C. et al. Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature 600, 59–63 (2021).

    Article  ADS  Google Scholar 

  15. Delano, J. W. Pristine lunar glasses: criteria, data, and implications. J. Geophys. Res. Solid Earth 91, 201–213 (1986).

    Article  Google Scholar 

  16. Naney, M. T., Crowl, D. M. & Papike, J. J. The Apollo 16 drill core—statistical analysis of glass chemistry and the characterization of a high alumina–silica poor/HASP/glass. Lunar Planet. Sci. Conf. Proc. 7, 155–184 (1976).

    ADS  Google Scholar 

  17. Gaddis, L. R., Staid, M. I., Tyburczy, J. A., Hawke, B. R. & Petro, N. E. Compositional analyses of lunar pyroclastic deposits. Icarus 161, 262–280 (2003).

    Article  ADS  Google Scholar 

  18. Gustafson, J. O., Bell, J. F., Gaddis, L. R., Hawke, B. R. & Giguere, T. A. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera data. J. Geophys. Res. Planets 117, E00H25 (2012).

    Article  ADS  Google Scholar 

  19. Wieczorek, M. A. et al. The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 60, 221–364 (2006).

    Article  Google Scholar 

  20. Neal, C. R. & Taylor, L. A. Petrogenesis of mare basalts: a record of lunar volcanism. Geochim. Cosmochim. Acta 56, 2177–2211 (1992).

    Article  ADS  Google Scholar 

  21. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust‐mantle origins. J. Geophys. Res. Planets 105, 4197–4216 (2000).

    Article  ADS  Google Scholar 

  22. Jolliff, B. L. et al. Non-mare silicic volcanism on the lunar farside at Compton–Belkovich. Nat. Geosci. 4, 566–571 (2011).

    Article  ADS  Google Scholar 

  23. Lucey, P. G. Mineral maps of the Moon. Geophys. Res. Lett. 31, L08701 (2004).

  24. Korotev, R. L., Zeigler, R. A., Jolliff, B. L., Irvin, A. J. & Bunch, T. E. Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentration. Meteorit. Planet. Sci. 44, 1287–1322 (2009).

    Article  ADS  Google Scholar 

  25. Russell, S. S., Joy, K. H., Jeffries, T. E., Consolmagno, G. J. & Kearsley, A. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model. Philos. Trans. R. Soc. Lond. A 372, 20130241 (2014).

    ADS  Google Scholar 

  26. Gross, J. & Joy, K. H. in Encyclopedia of Lunar Science 1–20 (Springer, 2016).

  27. Nielsen, R. L. & Drake, M. J. in Mare Crisium: the View from Luna 24 (eds Merrill, R. B. & Papike, J. J.) 419–428 (Pergamon Press, 1978).

  28. Arai, T., Warren, P. H. & Takeda, H. Four lunar mare meteorites: crystallization trends of pyroxenes and spinels. Meteorit. Planet. Sci. 31, 877–892 (1996).

    Article  ADS  Google Scholar 

  29. Robinson, K. L., & Treiman, A. H. Mare basalt fragments in lunar highlands meteorites: connecting measured Ti abundances with orbital remote sensing. In 41st Annual Lunar and Planetary Science Conference 1788.

  30. Warren, P. H., Taylor, G. J. & Keil, K. Regolith breccia Allan Hills A81005: evidence of lunar origin, and petrography of pristine and nonpristine clasts. Geophys. Res. Lett. 10, 779–782 (1983).

    Article  ADS  Google Scholar 

  31. Gross, J., Treiman, A. H. & Mercer, C. N. Lunar feldspathic meteorites: constraints on the geology of the lunar highlands, and the origin of the lunar crust. Earth Planet. Sci. Lett. 388, 318–328 (2014).

    Article  ADS  Google Scholar 

  32. Korotev, R. L., Jolliff, B. L., Zeigler, R. A., Gillis, J. J. & Haskin, L. A. Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim. Cosmochim. Acta 67, 4895–4923 (2003).

    Article  ADS  Google Scholar 

  33. Zeigler, R. A., Korotev, R. L., Jolliff, B. L., Haskin, L. A. & Floss, C. The geochemistry and provenance of Apollo 16 mafic glasses. Geochim. Cosmochim. Acta 70, 6050–6067 (2006).

    Article  ADS  Google Scholar 

  34. Korotev, R. L., Zeigler, R. A. & Floss, C. On the origin of impact glass in the Apollo 16 regolith. Geochim. Cosmochim. Acta 74, 7362–7388 (2010).

    Article  ADS  Google Scholar 

  35. Norman, M. D., Adena, K. J. D. & Christy, A. G. Provenance and Pb isotopic ages of lunar volcanic and impact glasses from the Apollo 17 landing site. Aust. J. Earth Sci. 59, 291–306 (2012).

    Article  ADS  Google Scholar 

  36. Sato, H., Robinson, M. S., Lawrence, S. J., Denevi, B. W. & Hiesinger, H. Lunar mare TiO2 abundances estimated from UV/VIS reflectance. Icarus 296, 216–238 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Chang'e-5 samples were allocated by the China National Space Administration. We thank Y. Wen and X. Li for their assistances with FIB/SEM and EPMA measurements. We are grateful to L. Maltagliati for the editorial handling of the manuscript and we also thank S. Simon for their helpful comments and suggestions during peer review. X.L. acknowledges financial support from the B-type Strategic Priority Program of the Chinese Academy of Sciences (No. XDB41000000), National Natural Science Foundation of China (No. 41931077) and Pre-research project on Civil Aerospace Technologies by CNSA (No. D020201). J.L. acknowledges financial support from the B-type Strategic Priority Program of the Chinese Academy of Sciences (No. XDB41000000) and National Natural Science Foundation of China (No. 41941003). X.Z. gratefully acknowledges support from the National Natural Science Foundation of China (No.42103036).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. prepared the Chang’e-5 samples, performed the research and prepared the initial manuscript. X.Z., X.L. and J.L. designed the research. All authors participated in the discussion of results, data interpretation and paper editing.

Corresponding authors

Correspondence to Xiongyao Li or Jianzhong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Steve Simon and Noah Petro for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1–7 and references

Supplementary Data

Supplementary Datasets 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Li, X. & Liu, J. Exotic clasts in Chang’e-5 regolith indicative of unexplored terrane on the Moon. Nat Astron 7, 152–159 (2023). https://doi.org/10.1038/s41550-022-01840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01840-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing