Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo

Abstract

Genome-wide sequencing has led to the discovery of thousands of long non-coding RNA (lncRNA) loci in the human genome, but evidence of functional significance has remained controversial for many lncRNAs. Genetically engineered model organisms are considered the gold standard for linking genotype to phenotype. Recent advances in CRISPR–Cas genome editing have led to a rapid increase in the use of mouse models to more readily survey lncRNAs for functional significance. Here, we review strategies to investigate the physiological relevance of lncRNA loci by highlighting studies that have used genetic mouse models to reveal key in vivo roles for lncRNAs, from fertility to brain development. We illustrate how an investigative approach, starting with whole-gene deletion followed by transcription termination and/or transgene rescue strategies, can provide definitive evidence for the in vivo function of mammalian lncRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dissecting functionality of the Xist locus using multiple strategies.
Fig. 2: The Tug1 locus highlights the complexity present at lncRNA loci.
Fig. 3: Physiological roles of lncRNAs discovered by gene targeting.
Fig. 4: lncRNA Airn transcription over the Igf2r promoter causes Igf2r silencing.
Fig. 5: Multiple mouse models unveil that the lncRNA Maenli controls the limb-specific En1 regulator by the act of transcription.
Fig. 6: Coupling LOF mouse models with transgene rescue to distinguish between lncRNA cis and trans activity.
Fig. 7: LOF strategies to disentangle the lncRNA mechanism of action in vivo.

Similar content being viewed by others

References

  1. Craig Venter, J. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  Google Scholar 

  2. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Rinn, J. L. et al. The transcriptional activity of human chromosome 22. Genes Dev. 17, 529–540 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002).

    Article  PubMed  Google Scholar 

  6. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. JS, M. & JL, R. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol. 22, 5–7 (2015).

    Article  CAS  Google Scholar 

  8. Guttman, M. & Rinn, J. L. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goff, L. A. et al. Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA 112, 6855–6862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  12. Melé, M. et al. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res. https://doi.org/10.1101/gr.214205.116 (2017).

  13. K, M. et al. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Res. 29, 344–355 (2019).

    Article  CAS  Google Scholar 

  14. Wang, Y., Yesselman, J. D., Zhang, Q., Kang, M. & Feigon, J. Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human. Proc. Natl Acad. Sci. USA 113, E5125–E5134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quinn, J. J. et al. Rapid evolutionary turnover underlies conserved lncRNA–genome interactions. Genes Dev. 30, 191 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Rinn, J. L., Chang, H. Y. & Chang, H. Y. Long noncoding RNAs: molecular modalities to organismal functions. Annu. Rev. Biochem. 89, 283–308 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Mongelli, A., Martelli, F., Farsetti, A. & Gaetano, C. The dark that matters: long noncoding RNAs as master regulators of cellular metabolism in noncommunicable diseases. Front. Physiol. 10, 369 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brannan, C. I., Dees, E. C., Ingram, R. S. & Tilghman, S. M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10, 28–36 (1990). This study represents the first discovery of a lncRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Lyle, R. et al. The imprinted antisense RNA at the lgf2r locus overlaps but does not imprint Mas1. Nat. Genet. 25, 19–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Jégu, T., Aeby, E. & Lee, J. T. The X chromosome in space. Nat. Rev. Genet. 18, 377–389 (2017).

    Article  PubMed  CAS  Google Scholar 

  24. Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2, 59–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Gendrel, A.-V. & Heard, E. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu. Rev. Cell Dev. Biol. 30, 561–580 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. LYON, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    Article  CAS  PubMed  Google Scholar 

  27. Tucci, V. et al. Genomic imprinting and physiological processes in mammals. Cell 176, 952–965 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Barlow, D. P. Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev. Genet. 45, 379–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Barlow, D. P. & Bartolomei, M. S. Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6, a018382 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11, 156–166 (1997). This study generates the first full-gene ablation mouse model of the lncRNA Xist.

    Article  CAS  PubMed  Google Scholar 

  32. Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Clemson, C. M., McNeil, J. A., Willard, H. F. & Lawrence, J. B. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132, 259–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Panning, B. & Jaenisch, R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev. 10, 1991–2002 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Csankovszki, G., Panning, B., Bates, B., Pehrson, J. R. & Jaenisch, R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat. Genet. 22, 323–324 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152, 727–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, L., Kirby, J. E., Sunwoo, H. & Lee, J. T. Female mice lacking Xist RNA show partial dosage compensation and survive to term. Genes Dev. 30, 1747–1760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adrianse, R. L. et al. Perturbed maintenance of transcriptional repression on the inactive X-chromosome in the mouse brain after Xist deletion. Epigenetics Chromatin 11, 1–13 (2018).

    Article  CAS  Google Scholar 

  39. Yang, L., Yildirim, E., Kirby, J. E., Press, W. & Lee, J. T. Widespread organ tolerance to Xist loss and X reactivation except under chronic stress in the gut. Proc. Natl Acad. Sci. USA 117, 4262–4272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Savarese, F., Flahndorfer, K., Jaenisch, R., Busslinger, M. & Wutz, A. Hematopoietic precursor cells transiently reestablish permissiveness for X inactivation. Mol. Cell. Biol. 26, 7167–7177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoki, Y. et al. A proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation in mouse. Development 136, 139–146 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Dossin, F. et al. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature 578, 455–460 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Okamoto, I. et al. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438, 369–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, J. T. & Jaenisch, R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386, 275–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, J. T., Strauss, W. M., Dausman, J. A. & Jaenisch, R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86, 83–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Beletskii, A., Hong, Y. K., Pehrson, J., Egholm, M. & Strauss, W. M. PNA interference mapping demonstrates functional domains in the noncoding RNA Xist. Proc. Natl Acad. Sci. USA 98, 9215–9220 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mudge, J. M. et al. Discovery of high-confidence human protein-coding genes and exons by whole-genome PhyloCSF helps elucidate 118 GWAS loci. Genome Res. 29, 2073–2087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Birnbaum, R. Y. et al. Coding exons function as tissue-specific enhancers of nearby genes. Genome Res. 22, 1059–1068 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Groff, A. F., Barutcu, A. R., Lewandowski, J. P. & Rinn, J. L. Enhancers in the Peril lincRNA locus regulate distant but not local genes. Genome Biol. 19, 1–14 (2018).

    Article  CAS  Google Scholar 

  51. Melé, M. & Rinn, J. L. ‘Cat’s cradling’ the 3D genome by the act of lncRNA transcription. Mol. Cell 62, 657–664 (2016).

    Article  PubMed  CAS  Google Scholar 

  52. Kornienko, A. E., Guenzl, P. M., Barlow, D. P. & Pauler, F. M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 11, 59 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Goff, L. A. & Rinn, J. L. Linking RNA biology to lncRNAs. Genome Res. 25, 1456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paralkar, V. R. et al. Unlinking an lncRNA from its associated cis element. Mol. Cell 62, 104–110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Groff, A. F. et al. In vivo characterization of Linc-p21 reveals functional cis-regulatory DNA elements. Cell Rep. 16, 2178–2186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kotzin, J. J. et al. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537, 239–243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bell, C. C. et al. The Evx1/Evx1as gene locus regulates anterior–posterior patterning during gastrulation. Sci. Rep. 6, 1–11 (2016).

    Article  CAS  Google Scholar 

  59. Mowel, W. K. et al. Group 1 innate lymphoid cell lineage identity is determined by a cis-regulatory element marked by a long non-coding RNA. Immunity 47, 435–449.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anderson, K. M. et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539, 433–436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Han, X. et al. The lncRNA Hand2os1/Uph locus orchestrates heart development through regulation of precise expression of Hand2. Development 146, dev176198 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Han, X. et al. Mouse knockout models reveal largely dispensable but context-dependent functions of lncRNAs during development. J. Mol. Cell Biol. 10, 175–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Elling, R. et al. Genetic models reveal cis and trans immune-regulatory activities for lincRNA-Cox2. Cell Rep. 25, 1511–1524.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carpenter, S. et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 341, 789–792 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lai, K. M. V. et al. Diverse phenotypes and specific transcription patterns in twenty mouse lines with ablated lincRNAs. PLoS ONE 10, e0125522 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sauvageau, M. et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2, e01749 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lewandowski, J. P. et al. The Tug1 lncRNA locus is essential for male fertility. Genome Biol. 21, 1–35 (2020).

    Article  CAS  Google Scholar 

  68. Long, J. et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J. Clin. Invest. 126, 4205–4218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Heesch, S. V. et al. The translational landscape of the human heart. Cell 178, 242–260.e29 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Valenzuela, D. M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. International Mouse Knockout Consortium Collins, F. S., Rossant, J. & Wurst, W. A mouse for all reasons. Cell 128, 9–13 (2007).

    Article  CAS  Google Scholar 

  73. Gabory, A. et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136, 3413–3421 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Andergassen, D. et al. In vivo firre and Dxz4 deletion elucidates roles for autosomal gene regulation. eLife 8, e47214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Andergassen, D. et al. The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet. 15, e1008268 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003).

    Article  PubMed  CAS  Google Scholar 

  77. Miyagawa, R. et al. Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA 18, 738–751 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605–612 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Nakagawa, S. et al. Malat1 is not an essential component of nuclear speckles in mice. RNA 18, 1487–1499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, B. et al. The lncRNA malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2, 111–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eißmann, M. et al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol. 9, 1076 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Liu, W. et al. LncRNA Malat1 inhibition of TDP43 cleavage suppresses IRF3-initiated antiviral innate immunity. Proc. Natl Acad. Sci. USA 117, 23695–23706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hewitson, J. P. et al. Malat1 suppresses immunity to infection through promoting expression of Maf and IL-10 in TH cells. J. Immunol. 204, 2949–2960 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Michalik, K. M. et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ. Res. 114, 1389–1397 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Cremer, S. et al. Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation 139, 1320–1334 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Hutchinson, J. N. et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8, 39 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sasaki, Y. T. F., Ideue, T., Sano, M., Mituyama, T. & Hirose, T. MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl Acad. Sci. USA 106, 2525–2530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13, 95–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Naganuma, T. et al. Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 31, 4020–4034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nakagawa, S. et al. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development 141, 4618–4627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Standaert, L. et al. The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA 20, 1844–1849 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, Y. W. et al. Systematic study of Drosophila microRNA functions using a collection of targeted knockout mutations. Dev. Cell 31, 784–800 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature 535, 575–579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Froberg, J. E., Pinter, S. F., Kriz, A. J., Jégu, T. & Lee, J. T. Megadomains and superloops form dynamically but are dispensable for X-chromosome inactivation and gene escape. Nat. Commun. 9, 1–19 (2018).

    Article  CAS  Google Scholar 

  97. Bonora, G. et al. Orientation-dependent Dxz4 contacts shape the 3D structure of the inactive X chromosome. Nat. Commun. 9, 1–17 (2018).

    Article  CAS  Google Scholar 

  98. Deng, X. et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 16, 1–21 (2015).

    Article  CAS  Google Scholar 

  99. Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl Acad. Sci. USA 113, E4504–E4512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Flores-Concha, M. & Oñate, Á. A. Long non-coding RNAs in the regulation of the immune response and trained immunity. Front. Genet. 11, 718 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Atianand, M. K. et al. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165, 1672–1685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vollmers, A. C. et al. A conserved long noncoding RNA, GAPLINC, modulates the immune response during endotoxic shock. Proc. Natl Acad. Sci. USA 118, e2016648118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiang, M. et al. Self-recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response. Cell 173, 906–919.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Zhou, B. et al. Endogenous retrovirus-derived long noncoding RNA enhances innate immune responses via derepressing rela expression. mBio 10, e00937-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lin, S. P. et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 35, 97–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Takahashi, N. et al. Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum. Mol. Genet. 18, 1879–1888 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Zhou, Y. et al. Activation of paternally expressed genes and perinatal death caused by deletion of the Gtl2 gene. Development 137, 2643–2652 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sanli, I. et al. Meg3 non-coding RNA expression controls imprinting by preventing transcriptional upregulation in cis. Cell Rep. 23, 337–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Whipple, A. J. et al. Imprinted maternally expressed microRNAs antagonize paternally driven gene programs in neurons. Mol. Cell 78, 85–95.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Grote, P. et al. The tissue-specific lncRNA fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24, 206–214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Szafranski, P. et al. Small noncoding differentially methylated copy-number variants, including IncRNA genes, cause a lethal lung developmental disorder. Genome Res. 23, 22–33 (2013).

    Article  CAS  Google Scholar 

  112. Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164, 69–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Tichon, A. et al. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat. Commun. 7, 1–10 (2016).

    Article  CAS  Google Scholar 

  114. Munschauer, M. et al. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature 561, 132–136 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Kopp, F. et al. PUMILIO hyperactivity drives premature aging of norad-deficient mice. eLife 8, e42650 (2019). This study is an excellent example of a whole-gene deletion approach for defining a lncRNA phenotype.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bond, A. M. et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat. Neurosci. 12, 1020–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Allou, L. et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature 592, 93–98 (2021). This recent study highlights how combining many of the approaches discussed in this Review can definitively determine the molecular function of a lncRNA locus that is critical for human health.

    CAS  PubMed  Google Scholar 

  118. Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002). This study first uses a polyA-termination strategy in a lncRNA locus.

    Article  CAS  PubMed  Google Scholar 

  119. Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338, 1469–1472 (2012). This study uses truncations of the lncRNA Airn to determine that transcription is the mechanism of silencing the overlapping gene Igf2r.

    Article  CAS  PubMed  Google Scholar 

  120. Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 20, 1470–1484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ballarino, M. et al. Deficiency in the nuclear long noncoding RNA Charme causes myogenic defects and heart remodeling in mice. EMBO J. 37, e99697 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Ritter, N. et al. The lncRNA locus handsdown regulates cardiac gene programs and is essential for early mouse development. Dev. Cell 50, 644–657.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Rom, A. et al. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat. Commun. 10, 1–15 (2019).

    Article  CAS  Google Scholar 

  124. Engreitz, J. M. et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539, 452–455 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Levitt, N., Briggs, D., Gil, A. & Proudfoot, N. J. Definition of an efficient synthetic poly(A) site. Genes Dev. 3, 1019–1025 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Canver, M. C. et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 289, 21312 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Klattenhoff, C. A. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152, 570–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. George, M. R. et al. Minimal in vivo requirements for developmentally regulated cardiac long intergenic non-coding RNAs. Development 146, dev185314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lavalou, P. et al. Strategies for genetic inactivation of long noncoding RNAs in zebrafish. RNA 25, 897–904 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maamar, H., Cabili, M. N., Rinn, J. & Raj, A. linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes Dev. 27, 1260–1271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA undary EleBoment. Cell 173, 1398–1412.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wurst, W., Auerbach, A. B. & Joyner, A. L. Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075 (1994).

    Article  CAS  PubMed  Google Scholar 

  136. Perry, R. B. T., Hezroni, H., Goldrich, M. J. & Ulitsky, I. Regulation of neuroregeneration by long noncoding RNAs. Mol. Cell 72, 553–567.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a Polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Andersen, R. E. et al. The long noncoding RNA Pnky is a trans-acting regulator of cortical development in vivo. Dev. Cell 49, 632–642.e7 (2019). This study is an excellent example of how a phenotype from whole-gene ablation can be rescued using a transgene, thus defining an RNA-based role of a lncRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lewandowski, J. P. et al. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat. Commun. 10, 1–13 (2019).

    Article  CAS  Google Scholar 

  140. Gomez, J. A. et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152, 743–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Magny, E. G. et al. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 341, 1116–1120 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Pauli, A. et al. Toddler: an embryonic signal that promotes cell movement via apelin receptors. Science 343, 1248636 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Matsumoto, A. et al. MTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541, 228–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Herberg, S., Gert, K. R., Schleiffer, A. & Pauli, A. The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization. Science 361, 1029–1033 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174, 350–362.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bitetti, A. et al. MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 25, 244–251 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Modzelewski, A. J. et al. Efficient mouse genome engineering by CRISPR-EZ technology. Nat. Protoc. 13, 1253–1274 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Teixeira, M. et al. Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing. Sci. Rep. 8, 474 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Qin, W. et al. Efficient CRISPR/cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200, 423–430 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hashimoto, M., Yamashita, Y. & Takemoto, T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev. Biol. 418, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Gurumurthy, C. B. et al. GONAD: a novel CRISPR/Cas9 genome editing method that does not require ex vivo handling of embryos. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg1508s88 (2016).

  153. Ohtsuka, M. et al. I-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 19, 1–15 (2018).

    Article  CAS  Google Scholar 

  154. Gurumurthy, C. B. et al. Creation of CRISPR-based germline–genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat. Protoc. 14, 2452–2482 (2019). The i-GONAD approach described in this study provides the foundations to systematically elucidate all functional lncRNA loci in vivo and further identify their mechanism of action.

    Article  CAS  PubMed  Google Scholar 

  155. Volders, P. J. et al. LNCipedia 5: towards a reference set of human long non-coding rnas. Nucleic Acids Res. 47, D135–D139 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Dietrich, J. S. & Edward, B. Lewis, Nobel Laureate 1995. Eng. Sci. 59, 2–7 (1996).

    Google Scholar 

  157. Andergassen, D. et al. Allelome.PRO, a pipeline to define allele-specific genomic features from high-throughput sequencing data. Nucleic Acids Res. https://doi.org/10.1002/0471142905.hg1508s88 (2015).

  158. Wang, X. & Clark, A. G. Using next-generation RNA sequencing to identify imprinted genes. Heredity 113, 156–166 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in allelic expression analysis. Genome Biol. 16, 1–12 (2015).

    Article  CAS  Google Scholar 

  160. Wutz, A. et al. Non-imprinted lgf2r expression decreases growth and rescues the Tme mutation in mice. Development 128, 1881–1887 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Mancini-DiNardo, D., Steele, S. J. S., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20, 1268–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fitzpatrick, G. V., Soloway, P. D. & Higgins, M. J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32, 426–431 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Barlow, D. P., Stöger, R., Herrmann, B. G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  164. Andergassen, D. et al. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression. eLife 6, e25125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Schertzer, M. D. et al. lncRNA-induced spread of polycomb controlled by genome architecture, RNA abundance, and CpG Island DNA. Mol. Cell 75, 523–537.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Terranova, R. et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev. Cell 15, 668–679 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Carpenter, D. Lim, M. Sauvageau and Q.J. Hudson for critical review and insights during the writing process. J.L.R. is the Leslie Orgel and Marvin Caruthers professor of RNA science and Howard Hughes Medical Institute (HHMI) faculty scholar. D.A. is supported by the Deutsche Forschungsgemeinschaft (Project-ID: 403584255—TRR 267). The authors are supported by HHMI and NIGMS PO GM099117.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Daniel Andergassen or John L. Rinn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks Thomas Thum, Igor Ulitsky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andergassen, D., Rinn, J.L. From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo. Nat Rev Genet 23, 229–243 (2022). https://doi.org/10.1038/s41576-021-00427-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00427-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology