Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes

Abstract

THE phospholipid bilayer1 in certain biological membranes is maintained so that the range of temperature over which the gel-to-liquid crystal transition occurs includes the environmental temperature2. As a result, clusters of phospholipid molecules in crystalline and liquid-crystalline states1 coexist in the membrane and the isothermal lateral compressibility of the membrane lipids is enhanced3. Any increase in compressibility should facilitate insertion of foreign molecules into the bilayer thereby affecting transport across the membrane. Indeed, there is evidence that transport of ions4,5 and sugars3, and penetration of an enzyme6 is increased when the chain-melting transition of the lipids occurs. The lateral compressibility of phospholipid bilayers has not been measured, however, and there is no direct evidence for an increase in compressibility at the point where the gel-to-liquid crystal phase transition occurs. In order to measure lateral compressibility, compression solely in the plane of the bilayer is required. Such directed compression of bilayers will be difficult but it can be readily achieved with monolayers at the air–water interface. Since the molecular packing in such monolayers of phospholipids is equivalent to that in bilayers dispersed in excess water1,7, this model system is particularly convenient for exploring the role of lateral compressibility. Here we show (1) how the compressibility of lecithin mono-layers varies with packing density and changes at the chain-melting transition, and (2) how penetration of a hydrophobic protein is dependent on the compressibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Phillips, M. C., Prog. Surface Membrane Sci., 5, 139–221 (1972).

    Article  CAS  Google Scholar 

  2. Melchior, D. L., Morowitz, H. J., Sturtevant, J. M., and Tsong, T. Y., Biochim. biophys. Acta, 219, 114–122 (1970).

    Article  CAS  Google Scholar 

  3. Linden, C. D., Wright, K. L., McConnell, H. M., and Fox, C. F., Proc. natn. Acad. Sci. U.S.A., 70, 2271–2275 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., Biochim. biophys. Acta, 311, 330–348 (1973).

    Article  CAS  Google Scholar 

  5. Wu, S. H. W., and McConnell, H. M., Biochem. biophys. Res. Commun., 55, 484–491 (1973).

    Article  CAS  Google Scholar 

  6. Op Den Kamp, J. A. F., De Gier, J., and Van Deenen, L. L. M., Biochim. biophys. Acta, 345, 253–256 (1974).

    Article  CAS  Google Scholar 

  7. Phillips, M. C., and Chapman, D., Biochim. biophys. Acta, 163, 301–313 (1968).

    Article  CAS  Google Scholar 

  8. Paltauf, F., Hauser, H., and Phillips, M. C., Biochim. biophys. Acta, 249, 539–547 (1971).

    Article  CAS  Google Scholar 

  9. Phillips, M. C., Evans, M. T. A., and Hauser, H., Proc. sixth int. Congress Surface Activity, 2, 381–391 (Carl Hanser, Munich, 1973).

    Google Scholar 

  10. Davis, M. A. F., Hauser, H., Leslie, R. B., and Phillips, M. C., Biochim. biophys. Acta, 317, 214–218 (1973).

    Article  CAS  Google Scholar 

  11. Adams, D. J., Evans, M. T. A., Mitchell, J. R., Phillips, M. C., and Rees, P. M., J. Polymer Sci., C 34, 167–179 (1971).

    Google Scholar 

  12. Dervichian, D. G., J. chem. Phys., 7, 931–948 (1939).

    Article  ADS  CAS  Google Scholar 

  13. Mayer, J. E., and Streeter, S. F., J. chem. Phys., 7, 1019–1025 (1939).

    Article  ADS  CAS  Google Scholar 

  14. Harkins, W. D., Young, J. F., and Boyd, G. E., J. chem. Phys., 8, 954–965 (1940).

    Article  ADS  CAS  Google Scholar 

  15. Joly, M., J. Colloid Sci., 5, 49–70 (1950).

    Article  CAS  Google Scholar 

  16. Harkins, W. D., in Physical Chemistry of Surface Films, 135–138 (Reinhold, New York, 1952).

    Google Scholar 

  17. Gregg, S. J., in The Surface Chemistry of Solids, first ed., 80–89 (Chapman and Hall, London, 1951).

    Google Scholar 

  18. Gaines, G. L., in Insoluble Monolayers at Liquid-Gas Interfaces, 156–188 (Interscience, New York, 1966).

    Google Scholar 

  19. Stanley, H. E., in Introduction to Phase Transitions and Critical Phenomena, 96–98 (Clarendon, Oxford, 1971).

    Google Scholar 

  20. Blank, M., J. phys. Chem., 66, 1911–1918 (1962).

    Article  CAS  Google Scholar 

  21. Rosano, H. L., and La Mer, V. K., J. phys. Chem., 60, 348–353 (1956).

    Article  Google Scholar 

  22. Colacicco, G., Lipids, 5, 636–649 (1970).

    Article  CAS  Google Scholar 

  23. Dawson, R. M. C., and Quinn, P. J., Adv. exp. Med. Biol., 14, 1–17 (1971).

    Article  CAS  Google Scholar 

  24. Phillips, M. C., Evans, M. T. A., and Hauser, H., Adv. Chem. (in the press).

  25. Papahadjopoulos, D., Cowden, M., and Kimelberg, H., Biochim. biophys. Acta, 330, 8–26 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PHILLIPS, M., GRAHAM, D. & HAUSER, H. Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes. Nature 254, 154–156 (1975). https://doi.org/10.1038/254154a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/254154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing