Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is the red cell calcium pump regulated by ATP?

Abstract

THE very low physiological level of calcium in the human red cell is maintained by a powerful ATP-fuelled Ca extrusion pump which has been extensively studied1. Recently evidence has been accumulating that the kinetic properties of the active Ca flux and associated (Ca + Mg) ATPase activity depend very much on the experimental conditions and/or the manner of preparation of the red cell membranes or resealed ghosts2–4. The variability may reflect the nature or degree of interaction between the membrane Ca pump and a cytoplasmic activator protein described recently5–7, which could be involved in regulation of physiological Ca levels. In previous work with whole red cells8,9 or resealed ghosts10 the concentrations of the major Ca pump ligands, ATP and/or Ca, have been changing during the course of the reaction. Because of the possible importance of the ligand conditions in assessing the physiological functioning of the Ca pump, we have looked at (Ca + Mg)-dependent ATP hydrolysis in resealed ghosts with buffered ATP and Ca levels and at the active Ca flux with a buffered ATP level. The experiments reported here show that both the ATP hydrolysis and the Ca flux are activated with two distinct ATP affinities and this raises the possibility of regulation of the Ca pump by ATP in the region of the lower affinity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schatzmann, H. J. in Current topics in membranes and transport Vol. 6, 125 (1975).

    Google Scholar 

  2. Quist, E. & Roufogalis, D. D. Archs Biochem. Biophys. 168, 240–251 (1975).

    Article  CAS  Google Scholar 

  3. Sharff, O. Biochim biophys. Acta 468, 202–218 (1976).

    Google Scholar 

  4. Sharff, O. & Foder, B. Biochim. biophys. Acta 483, 416–427 (1977).

    Article  Google Scholar 

  5. Gopinath, R. M. & Vicenzi, F. F. Biochem. biophys. Res. Commun. 77, 1203–1209 (1977).

    Article  CAS  Google Scholar 

  6. Jarrett, H. W. & Penniston, J. T. Biochem. biophys. Res. Commun. 77, 1210–1216 (1977).

    Article  CAS  Google Scholar 

  7. Jarrett, H. W. & Penniston, J. T. J. biol. Chem. 253, 4676–4682 (1978).

    CAS  PubMed  Google Scholar 

  8. Lew, V. L. & Ferreira, H. Nature 259, 47–49 (1976).

    Article  ADS  Google Scholar 

  9. Sarkadi, B., Szasz, I., Gerloczy, A. & Gardos, G. Biochim. biophys. Acta 464, 93–107 (1977).

    Article  CAS  Google Scholar 

  10. Schatzmann, H. J. J. Physiol., Lond. 235, 551–569 (1973).

    Article  CAS  Google Scholar 

  11. Glynn, I. M. & Karlish, S. J. D. J. Physiol., Lond. 256, 465–496 (1976).

    Article  CAS  Google Scholar 

  12. Wolf, U. Experientia 29, 241–249 (1973).

    Article  CAS  Google Scholar 

  13. Wolf, M. U. Biochim. biophys. Acta 266, 361–375 (1972).

    Article  CAS  Google Scholar 

  14. Schatzmann, H. J. J. Membrane Biol. 35, 149–158 (1977).

    Article  CAS  Google Scholar 

  15. Wolf, U., Dieckvoss, G. & Lichtner, R. Acta biol. med. germ. 36, 847–858 (1977).

    CAS  PubMed  Google Scholar 

  16. Sharff, O. & Foder, B. Biochim. biophys. Acta 509, 67–77 (1978).

    Article  Google Scholar 

  17. Sarkadi, B., Macintyre, J. D. & Gardos, G. FEBS Lett. 89, 78–82 (1978).

    Article  CAS  Google Scholar 

  18. Knauf, P., Proverbio, S. & Hoffman, J. J. gen. Physiol. 63, 324–336 (1974).

    Article  CAS  Google Scholar 

  19. Rega, A. & Garrahan, P. J. J. Membrane Biol. 22, 313–327 (1975).

    Article  CAS  Google Scholar 

  20. Post, R. L., Hegevary, C. & Kume, S. J. biol. Chem. 247, 6530–6540 (1972).

    CAS  PubMed  Google Scholar 

  21. Jorgensen, P. L. Biochim. biophys. Acta 401, 339–415 (1975).

    Google Scholar 

  22. Karlish, S. J. D., Yates, D. W. & Glynn, I. M. Biochim. biophys. Acta 525, 252–264 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MUALEM, S., KARLISH, S. Is the red cell calcium pump regulated by ATP?. Nature 277, 238–240 (1979). https://doi.org/10.1038/277238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/277238a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing