Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inherited defect in a Na+, K+ -co-transport system in erythrocytes from essential hypertensive patients

Abstract

The Na+ and K+ electrochemical gradients across cell membranes are believed to be maintained by the action of a Na+, K+-pump1–3. In human erythrocytes this pump exchanges internal Na+ for external K+ in approximately a 1.5 ratio4,5. Thus, when Na+-loaded/K+-depleted erythrocytes are incubated in physiological conditions they tend to recover their original low Na+/high K+ content. Surprisingly, in erythrocytes from healthy donors the net Na+ extrusion/K+ influx ratio exceeds the 1.5 ratio predicted for Na+, K+-pump-mediated fluxes whereas it is similar to this value in erythrocytes from essential hypertensive patients and some of their descendants6. We now report that this difference is due to the presence of a Na+, K+-co-transport system in normal erythrocytes which extrudes both internal Na+ and K+ and is functionally deficient in erythrocytes of essential hypertensive patients and some of their descendants. No difference in passive Na+ permeability could be detected between normotensive and hypertensive subjects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Glynn, I. & Karlish, S. A. Rev. Physiol. 37, 13–55 (1975).

    Article  CAS  Google Scholar 

  2. Sarkadi, B. & Tosteson, D. in Membrane Transport in Biology Vol. 2 (eds Giebisch, G., Tosteson, D. & Ussing, H) 117–160 (Springer, Heidelberg, 1979).

    Google Scholar 

  3. Garrahan, P. & Garay, R. Curr. Topics Membrane Transport 8, 29–97 (1976).

    Article  CAS  Google Scholar 

  4. Post, R. & Jolly, P. Biochim. biophys. Acta 25, 118–128 (1957).

    Article  CAS  Google Scholar 

  5. Whittam, R. & Ager, N. Biochem. J. 97, 214–227 (1965).

    Article  CAS  Google Scholar 

  6. Garay, R. P. & Meyer, P. Lancet i, 349–353 (1979).

    Article  Google Scholar 

  7. Lew, V. & Beaugé, L. in Membrane Transport in Biology (eds Giebisch, G., Tosteson, D. & Ussing, H.) 81–115 (Springer, Heidelberg, 1979).

    Google Scholar 

  8. Wambach, G., Helber, A., Bönner, G. & Hummerich, W. Klin. Wochenschr. 57, 169–172 (1979).

    Article  CAS  Google Scholar 

  9. Zachowski, A., Lelièvre, L., Aubry, J., Charlemagne, D. & Paraf, A. Proc. natn. Acad. Sci. U.S.A. 79, 633–637 (1977).

    Article  ADS  Google Scholar 

  10. Glynn, I. J. Physiol., Lond. 136, 148–173 (1957).

    Article  CAS  Google Scholar 

  11. Hoffman, J. & Kregenow, F. Ann. N.Y. Acad. Sci. 137, 566–576 (1966).

    Article  ADS  CAS  Google Scholar 

  12. Sachs, J. J. gen. Physiol. 57, 259–282 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Beaugé, L. & Ortiz, O. J. Membrane Biol. 13, 165–184 (1973).

    Article  Google Scholar 

  14. McManus, T. & Schmidt, W. in Membrane Transport Processes Vol. 1 (ed. Hoffman, J.) 79–106 (Raven, 1978).

    Google Scholar 

  15. Beaugé, L. & Adragna, N. J. gen. Physiol. 57, 576–592 (1971).

    Article  Google Scholar 

  16. Wiley, J. & Cooper, R. J. clin. Invest. 53, 745–755 (1974).

    Article  CAS  Google Scholar 

  17. Wessels, F. & Losse, M. Z. Kreislaufforsch. 56, 374–380 (1967).

    CAS  Google Scholar 

  18. Postnov, Y., Orlov, S., Shevchenko, A. & Adler, A. Pflügers Arch. ges. Physiol. 371, 263–269 (1977).

    Article  CAS  Google Scholar 

  19. Canessa, M., Adragna, N., Connolly, T., Solomon, H. & Tosteson, D. Clin. Res. 27, 511 A (1979).

    Google Scholar 

  20. Blaustein, M. Am. J. Physiol. 232, c165–c173 (1977).

    Article  CAS  Google Scholar 

  21. De Champlain, J., Krakoff, L. & Axelrod, J. Circulation Res. 23, 479–491 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garay, R., Dagher, G., Pernollet, MG. et al. Inherited defect in a Na+, K+ -co-transport system in erythrocytes from essential hypertensive patients. Nature 284, 281–283 (1980). https://doi.org/10.1038/284281a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/284281a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing