Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Binding of ATP to tubulin

Abstract

Microtubules are present in all eukaryotic cells and participate in a variety of cellular processes1. From recent studies it has become clear that nucleotides have a central role in the assembly of tubulin into microtubules2–5. The tubulin dimer binds two moles of guanine nucleotide: one (at the E-site) which can exchange with exogenous nucleotide and one (at the N-site) which does not exchange6. E-site GTP is hydrolysed during the assembly process4,7,8. Microtubule assembly can be induced by ATP through a contaminating nucleoside diphosphokinase activity that regenerates GTP following its hydrolysis—this is associated with tubulin polymerization4,9,10. Recent reports suggest that ATP has other effects on the assembly kinetics11–13, and we have shown14,15, using tubulin preparations lacking the nucleoside diphosphokinase activity, that ATP may play a critical part in the regulation of microtubule formation by binding to tubulin at a site which is distinct from the N- and E-sites. Kinetic data suggest a model in which ATP can act at the level of nucleation to stimulate assembly15. We now report the first direct evidence for the binding of ATP to tubulin and show that the corresponding dissociation constant is in a range of physiological significance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roberts, K. & Hyams, J. S. (eds) Microtubules (Academic, New York, 1979).

  2. Weisenberg, R. C. Science 177, 1104–1105 (1972).

    Article  ADS  CAS  Google Scholar 

  3. Jacobs, M., Smith, H. & Taylor, E. W. J. molec. Biol 89, 455–468 (1974).

    Article  CAS  Google Scholar 

  4. Penningroth, S. M. & Kirschner, M. W. J. molec. Biol. 115, 643–673 (1977).

    Article  CAS  Google Scholar 

  5. Weisenberg, R. C., Derry, W. J. & Dickinson, P. J. Biochemistry 15, 4248–4254 (1976).

    Article  CAS  Google Scholar 

  6. Weisenberg, R. C., Borisy, G. G. & Taylor, E. W. Biochemistry 7, 4466–4479 (1968).

    Article  CAS  Google Scholar 

  7. Kobayashi, T. J. Biochem, Tokyo 77, 1193–1197 (1975).

    CAS  Google Scholar 

  8. David-Pfeury, T., Erickson, H. P. & Pantaloni, D. Proc. natn. Acad. Sci. U.S.A. 74, 5372–5376 (1977).

    Article  ADS  Google Scholar 

  9. Jacobs, M. & Caplow, M. Biochem. biophys. Res. Commun. 68 (1976); Proc. natn. Acad. Sci. U.S.A. 74, 5372–5376 (1976).

    Article  Google Scholar 

  10. Zeeberg, B. & Caplow, M. J. biol. Chem. 253, 1984–1990 (1978)

    CAS  PubMed  Google Scholar 

  11. Selkoe, D. J. Brain Res. 172, 382–386 (1979).

    Article  CAS  Google Scholar 

  12. Margolis, R. L. & Wilson, L. Cell 18, 673–679 (1979).

    Article  CAS  Google Scholar 

  13. Kumagai, H., Nishida, E. & Sakai, H. J. Biochem, Tokyo 85, 495–502, 127–135 (1979).

    Article  CAS  Google Scholar 

  14. Zabrecky, J. R. & Cole, R. D. J. biol Chem. 255, 11981–11985 (1980).

    CAS  PubMed  Google Scholar 

  15. Zabrecky, J. R. & Cole, R. D. J. biol. Chem. (in the press).

  16. Hummel, J. P. & Dreyer, W. J. Biochim. biophys. Acta 63, 530–532 (1962).

    Article  CAS  Google Scholar 

  17. Zeeberg, B. & Caplow, M. Biochemistry 18, 3880–3886 (1979).

    Article  CAS  Google Scholar 

  18. Caplow, M. & Zeeberg, B. Archs Biochem. Biophys. 203, 404–411 (1980).

    Article  CAS  Google Scholar 

  19. Williamson, D. H. & Brosnan, J. T. in Methods of Enzymatic Analysis (ed. Bergmeyer, H. U.) 2266–2302 (Academic, New York, 1974).

    Book  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabrecky, J., Cole, R. Binding of ATP to tubulin. Nature 296, 775–776 (1982). https://doi.org/10.1038/296775a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296775a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing