Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dispersion and advection in unsaturated porous media enhanced by anion exclusion

Abstract

IT has been observed1–4 that the average transport velocity of dissolved anions through soils may be larger than that of the accompanying water molecules, owing to electrostatic repulsion by negatively charged solid surfaces, which forces the anions into pore centres where the velocity is faster. This phenomenon, known as anion exclusion, has been explained by diffusive double-layer theory5–7. Here we present analyses and numerical modelling of concentration/depth profiles of tritium, chloride and sulphate which were collected from irrigated land in the Israeli coastal plain. We found that the anions travelled at about twice the velocity of tritium. The behaviour of tritium is consistent with advective–diffusive transport, but the values of the dispersion coefficients associated with anion transport greatly exceeded the values expec-ted for molecular diffusion in a porous medium, and were 30 times those found for tritium transport. Our results indicate that anion exclusion restricts the number of active pore networks avail-able for anion transport. We present two conceptual models that can explain the observed results—in one model some porous regions are completely blocked, whereas in the other they are only partially blocked.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mokady, R. S., Ravina, J. & Zazlavsky, D. Israel J. Chem. 6, 159–165 (1968).

    Article  CAS  Google Scholar 

  2. Smith, S. J. Soil Sci. 114, 259–263 (1972).

    Article  ADS  CAS  Google Scholar 

  3. James, R. V. & Rubin, J. Soil Sci. Soc. Am. J. 50, 1142–1149 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Bond, W. J. & Phillips, J. R. Soil Sci. Soc. Am. J. 54, 633–645 (1990).

    Google Scholar 

  5. De Haan, F. A. M. Centrum voor Landbouwpublikaties en Landbouwdocumentatie, 164 (Wageningen, 1965).

    Google Scholar 

  6. Krupp, H. K., Biggar, J. W. & Nielsen, D. R. Soil Sci. Soc. Am. Proc. 36, 412–417 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Bresler, E. Soil Sci. Soc. Am. Proc. 37, 663–669 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Gvirtzman, H., Ronen, D. & Magaritz, M. J. Hydrol. 87, 267–283 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Gat, R. J. Handbook of Environmental Isotope Geochemistry vol. 1, 21–47 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  10. Zimmermann, U. Science, 152, 346–347 (1966).

    Article  ADS  CAS  Google Scholar 

  11. Bear, J. Dynamics of Fluids in Porous Media, 764p (Elsevier, New York, 1972).

    Google Scholar 

  12. Pfankuch, H. D. Rev. Inst. Fr. Petrol. 2, 215–270 (1963).

    Google Scholar 

  13. Marsily, G. de Quantitative Hydrogeology, 440p (Academic Press, Orlando, 1986).

    Google Scholar 

  14. Wagner, B. J. & Gorelick, S. M. Water Resource Res. 22, 1303–1315 (1986).

    Article  ADS  Google Scholar 

  15. DeSmedt, F., Wauters, F. & Sevilla, S. J. Hydrol. 85, 169–181 (1986).

    Article  ADS  Google Scholar 

  16. Dagan, G. Water Resource Res. 22, 12OS–134S (1986).

    Article  Google Scholar 

  17. Gelhar, L. W. Water Resource Res. 22, 135S–145S (1986).

    Article  Google Scholar 

  18. Neuman, S. P. Water Resource Res. 26, 1749–1758 (1990).

    Article  ADS  Google Scholar 

  19. Van Genuchten, M. T. & Wierenga, P. J. Soil Sci. Soc. Am. J. 41, 272–285 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Rao, P. S. C., Jessup, R. E., Rolston, D. E., Davidson, J. M. & Kilcrease, D. P. Soil Sci. Soc. Am. J. 44, 684–688 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Wang, J. H., Robinson, C. V. & Edelman, I. S. J. Am. chem. Soc. 75, 466–470 (1953).

    Article  Google Scholar 

  22. Li, Y. H. & Gregory, S. Geochim. cosmochim. Acta 38, 703–714 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gvirtzman, H., Gorelick, S. Dispersion and advection in unsaturated porous media enhanced by anion exclusion. Nature 352, 793–795 (1991). https://doi.org/10.1038/352793a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352793a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing