Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conformational changes in an ultrafast light-driven enzyme determine catalytic activity

Abstract

The role of conformational changes in explaining the huge catalytic power of enzymes is currently one of the most challenging questions in biology1,2,3,4,5,6,7. Although it is now widely regarded that enzymes modulate reaction rates by means of short- and long-range protein motions3,4,5,6,7, it is almost impossible to distinguish between conformational changes and catalysis. We have solved this problem using the chlorophyll biosynthetic enzyme NADPH:protochlorophyllide (Pchlide) oxidoreductase, which catalyses a unique light-driven reaction involving hydride and proton transfers8. Here we report that prior excitation of the enzyme-substrate complex with a laser pulse induces a more favourable conformation of the active site, enabling the coupled hydride and proton transfer reactions to occur. This effect, which is triggered during the Pchlide excited-state lifetime and persists on a long timescale, switches the enzyme into an active state characterized by a high rate and quantum yield of formation of a catalytic intermediate. The corresponding spectral changes in the mid-infrared following the absorption of one photon reveal significant conformational changes in the enzyme, illustrating the importance of flexibility and dynamics in the structure of enzymes for their function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homology model of POR from Synechocystis24.
Figure 2: Evolution-associated difference spectra resulting from a global analysis, as a function of illumination time.
Figure 3: Target analysis 26 of the illumination-dependent POR pump–probe data sets.
Figure 4: Mid-infrared absorption difference data.

Similar content being viewed by others

References

  1. Benkovic, S. J. & Hammes-Schiffer, S. A perspective on enzyme catalysis. Science 301, 1196–1202 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Villà, J. & Warshel, A. Energetics and dynamics of enzymatic reactions. J. Phys. Chem. B 105, 7887–7907 (2001)

    Article  Google Scholar 

  3. Masgrau, L. et al. Atomic description of an enzyme reaction dominated by proton tunneling. Science 312, 237–241 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Kohen, A., Cannio, R., Bartolucci, S. & Klinman, J. P. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399, 496–499 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Eisenmesser, E. Z. et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117–121 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Agarwal, P. K. Role of protein dynamics in reaction rate enhancement by enzymes. J. Am. Chem. Soc. 127, 15248–15256 (2005)

    Article  CAS  Google Scholar 

  7. Wang, L., Goodey, N. M., Benkovic, S. J. & Kohen, A. Coordinated effects of distal mutations on environmentally coupled tunneling in dihydrofolate reductase. Proc. Natl Acad. Sci. USA 103, 15753–15758 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Heyes, D. J. & Hunter, C. N. Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem. Sci. 30, 642–649 (2005)

    Article  CAS  Google Scholar 

  9. Eisenmesser, E. Z., Bosco, D. A., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1520–1523 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Flomenbom, O. et al. Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proc. Natl Acad. Sci. USA 102, 2368–2372 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Boehr, D. D., McElheny, D., Dyson, H. J. & Wright, P. E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006)

    Article  ADS  CAS  Google Scholar 

  12. Lebedev, N. & Timko, M. P. Protochlorophyllide photoreduction. Photosyn. Res. 58, 5–23 (1998)

    Article  CAS  Google Scholar 

  13. Griffiths, W. T. Reconstruction of chlorophyllide formation by isolated etioplast membranes. Biochem. J. 174, 681–692 (1978)

    Article  CAS  Google Scholar 

  14. Wilks, H. M. & Timko, M. P. A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase. Identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc. Natl Acad. Sci. USA 92, 724–728 (1995)

    Article  ADS  CAS  Google Scholar 

  15. Valera, V., Fung, M., Wessler, A. N. & Richards, W. R. Synthesis of 4R- and 4S-tritium labeled NADPH for the determination of the coenzyme stereospecificity of NADPH-protochlorophyllide oxidoreductase. Biochem. Biophys. Res. Commun. 148, 515–520 (1987)

    Article  CAS  Google Scholar 

  16. Begley, T. P. & Young, H. Protochlorophyllide reductase. 1. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide. J. Am. Chem. Soc. 111, 3095–3096 (1989)

    Article  CAS  Google Scholar 

  17. Heyes, D. J., Hunter, C. N., van Stokkum, I. H. M., van Grondelle, R. & Groot, M. L. Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase. Nature Struct. Biol. 10, 491–492 (2003)

    Article  CAS  Google Scholar 

  18. Heyes, D. J., Ruban, A. V., Wilks, H. M. & Hunter, C. N. Enzymology below 200K: the kinetics and thermodynamics of the photochemistry catalysed by protochlorophyllide oxidoreductase. Proc. Natl Acad. Sci. USA 99, 11145–11150 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Heyes, D. J. & Hunter, C. N. Identification and characterization of the product release steps within the catalytic cycle of protochlorophyllide oxidoreductase. Biochemistry 43, 8265–8271 (2004)

    Article  CAS  Google Scholar 

  20. Heyes, D. J. et al. The first catalytic step of the light-driven enzyme protochlorophyllide oxidoreductase proceeds via a charge transfer complex. J. Biol. Chem. 281, 26847–26853 (2006)

    Article  CAS  Google Scholar 

  21. Heyes, D. J., Ruban, A. V. & Hunter, C. N. protochlorophyllide oxidoreductase: ‘Dark’ reactions of a light-driven enzyme. Biochemistry 42, 523–528 (2003)

    Article  CAS  Google Scholar 

  22. Zhao, G.-J. & Han, K.-L. Site-specific solvation of the photoexcited protochlorophyllide a in methanol: formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening. Biophys. J. 94, 38–46 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Townley, H. E., Sessions, R. B., Clarke, A. R., Dafforn, T. R. & Griffiths, W. T. Protochlorophyllide oxidoreductase: A homology model examined by site-directed mutagenesis. Proteins 44, 329–335 (2001)

    Article  CAS  Google Scholar 

  25. Groot, M. L., Breton, J., van Wilderen, L. J. G. W., Dekker, J. P. & van Grondelle, R. Femtosecond visible/visible and visible/mid-IR pump-probe study of the photosystem II core antenna complex CP47. J. Phys. Chem. B 108, 8001–8006 (2004)

    Article  CAS  Google Scholar 

  26. van Stokkum, I. H. M., Larsen, D. S. & van Grondelle, R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta 1657, 82–104 (2004)

    Article  CAS  Google Scholar 

  27. Barth, A. & Zscherp, C. What vibrations tell us about proteins. Q. Rev. Biophys. 35, 369–430 (2002)

    Article  CAS  Google Scholar 

  28. Iwaki, M., Cotton, N. P., Quirk, P. G., Rich, P. R. & Jackson, J. B. Molecular recognition between protein and nicotinamide dinucleotide in intact, proton-translocating transhydrogenase studied by ATR-FTIR Spectroscopy. J. Am. Chem. Soc. 128, 2621–2629 (2006)

    Article  CAS  Google Scholar 

  29. Nabedryk, E., Leonhard, M., Mäntele, W. & Breton, J. Fourier transform infrared difference spectroscopy shows no evidence for an enolization of chlorophyll a upon cation formation either in vitro or during P700 photooxidation. Biochemistry 29, 3242–3247 (1990)

    Article  CAS  Google Scholar 

  30. Hartwich, G., Geskes, C., Scheer, H., Heinze, J. & Maentele, W. Fourier transform infrared spectroscopy of electrogenerated anions and cations of metal-substituted bacteriochlorophyll a. J. Am. Chem. Soc. 117, 7784–7790 (1995)

    Article  CAS  Google Scholar 

  31. Mäntele, W. G., Wollenweber, A. M., Nabedryk, E. & Breton, J. Infrared spectroelectrochemistry of bacteriochlorophylls and bacteriopheophytins: Implications for the binding of the pigments in the reaction center from photosynthetic bacteria. Proc. Natl Acad. Sci. USA 85, 8468–8472 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by The Netherlands Organization for Scientific Research through the Dutch Foundation for Earth and Life Sciences (Investment Grant no. 834.01.002). M.L.G. is grateful to NWO-ALW for providing financial support with a long-term fellowship (Grant no. 831.00.004) and O.S. received support from NWO-CW (Grant no. 700.53.307). D.J.H. and C.N.H. gratefully acknowledge support from the Biotechnology and Biological Sciences Research Council, UK. We thank H. Fidder and F. van Mourik for reading the manuscript.

Author Contributions O.A.S., D.J.H., M.T.A. and M.L.G. produced the samples and performed all of the experiments. O.A.S., I.H.M.v.S. and M.L.G. analysed the data. D.J.H., C.N.H., R.v.G. and M.L.G. coordinated the study, designed the experiments and wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Neil Hunter.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S6 with Legends. (PDF 852 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sytina, O., Heyes, D., Hunter, C. et al. Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature 456, 1001–1004 (2008). https://doi.org/10.1038/nature07354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07354

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing