Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis

Abstract

Only a few p53 regulators have been shown to participate in the selective control of p53-mediated cell cycle arrest or apoptosis. How p53-mediated apoptosis is negatively regulated remains largely unclear. Here we report that Apak (ATM and p53-associated KZNF protein), a Krüppel-associated box (KRAB)-type zinc-finger protein, binds directly to p53 in unstressed cells, specifically downregulates pro-apoptotic genes, and suppresses p53-mediated apoptosis by recruiting KRAB-box-associated protein (KAP)-1 and histone deacetylase 1 (HDAC1) to attenuate the acetylation of p53. Apak inhibits p53 activity by interacting with ATM, a previously identified p53 activator. In response to stress, Apak is phosphorylated by ATM and dissociates from p53, resulting in activation of p53 and induction of apoptosis. These findings revealed Apak to be a negative regulator of p53-mediated apoptosis and showed the dual role of ATM in p53 regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apak negatively regulates p53-mediated apoptosis.
Figure 2: Apak interacts with p53 both in vitro and in vivo.
Figure 3: Apak recruits histone acetylase to regulate p53 acetylation.
Figure 4: Apak requires ATM to repress p53 activity in unstressed cells.
Figure 5: Apak is phosphorylated by ATM in response to cellular stress.
Figure 6: Apak phosphorylation on Ser 68 is critical for p53-mediated apoptosis.
Figure 7: ATM and KAP-1 coordinate the selection of p53 target gene expression with KZNF proteins.
Figure 8: A model for Apak function and regulation in unstressed and DNA-damaged cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Laptenko, O. & Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13, 951–961 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Braithwaite, A. W., Del Sal, G. & Lu, X. Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ. 13, 984–993 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Das, S., et al. Hzf determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130, 624–637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tanaka, T., Ohkubo, S., Tatsuno, I. & Prives, C. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130, 638–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Trigiante, G. & Lu, X. ASPP and cancer. Nature Rev. Cancer 6, 217–226 (2006).

    Article  CAS  Google Scholar 

  7. Sullivan, A. & Lu, X. ASPP: a new family of oncogenes and tumour suppressor genes. Br. J. Cancer 96, 196–200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huntley, S. et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res. 16, 669–677 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedman, J. R. et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10, 2067–2078 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Urrutia, R. KRAB-containing zinc-finger repressor proteins. Genome Biol. 4, 231 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peng, H. et al. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J. Mol. Biol. 295, 1139–1162 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Schultz, D. C., Friedman, J. R. & Rauscher, F. J. 3rd. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes Dev. 15, 428–443 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of enchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  15. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biol. 8, 870–876 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, J. et al. Protein interaction data set highlighted with human Ras-MAPK/PI3K signaling pathways. J. Proteome Res. 7, 3879–3889 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Shen, Z., Pardington-Purtymun P. E., Comeaux, J. C., Moyzis, R. K. & Chen, D. J. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics 37, 183–186 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Kahyo, T., Nishida, T. & Yasuda, H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell 8, 713–718 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl Acad. Sci. USA 99, 2872–2877 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, S. T., Lim, D. S., Canman, C. E. & Kastan, M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538–37543 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Tang, Y., Zhao, W., Chen, Y., Zhao, Y. & Gu, W. Acetylation is indispensable for p53 activation. Cell 133, 612–626 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Luo, J. et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell 107, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Ito, A. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331–1340 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, C. et al. MDM2 interaction with nuclear corepressor KAP-1 contributes to p53 inactivation. EMBO J. 24, 3279–3290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, L. et al. CKIP-1 recruits nuclear ATM partially to the plasma membrane through interaction with ATM. Cell. Signal. 18, 1386–1395 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Khosravi, R. et al. Rapid ATM-dependent phosphorylation of Mdm2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 14973–14977 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Li, J. et al. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway. Biochem. Biophys. Res. Commun. 363, 895–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Rui, Y. et al. Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J. 23, 4583–4594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Li, L. et al. PACT is a negative regulator of p53 and essential for cell growth and embryonic development. Proc. Natl Acad. Sci. USA 104, 7951–7956 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, X. et al. JAB1 accelerates mitochondrial apoptosis by interaction with proapoptotic BclGs. Cell. Signal. 20, 230–240 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, K. et al. Targeting of WW domains linker of HECT type ubiquitin ligase Smurf1 for activation by CKIP-1. Nature Cell Biol. 10, 994–1002 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Li, L. et al. NuSAP is degraded by APC/C-Cdh1 and its overexpression results in mitotic arrest dependent of its microtubules' affinity. Cell. Signal. 19, 2046–2055 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Andersen, J. S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, L. et al. The PH domain containing protein CKIP-1 binds to IFP35 and Nmi and is involved in cytokine signaling. Cell. Signal. 19, 932–944 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, J. et al. ATM-dependent CHK2 activation induced by anticancer agent, irofulven. J. Biol. Chem. 279, 39584–39592 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kurki, S. et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5, 465–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Shiotani, B. et al. Involvement of the ATR- and ATM-dependent checkpoint responses in cell cycle arrest evoked by pierisin-1. Mol. Cancer Res. 4, 125–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Xie, P. et al. Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes. Cell. Signal. 20, 1671–1678 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, J. et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 444, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hermeking, H. et al. 14-3-3σ is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Shi, X. et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol. Cell 27, 636–646 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaeser, M. D. & Iggo, R. D. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc. Natl Acad. Sci. USA 99, 95–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Cliby, W. A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17, 159–169 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Bert Vogelstein, Michael B. Kastan, Qimin Zhan, Wei Gu, Jiandong Chen, Yue Xiong, Shengcai Lin, Gang Pei and Weiguo Zhu for providing materials; Yi Tie, Heping Pan, Qiao Sun, Juntao Yang, Xiushan Yin, Dahu Li, Bo Dong, Shaofei Zhong, Bin Li and Yanzhi Yuan for technical assistance; and Wei Gu, Yue Xiong, Shengcai Lin, Zigang Dong, Yi Rao and Chengrong Lu for critical reading of the manuscript. This study was supported by Chinese National Basic Research Programs 2007CB914601 (L.Z.) and 2006CB910802 (F.H., L.Z.), Chinese National Natural Science Foundation Projects 30621063 (F.H.) and 30600310, 30871373 (C.T.), and the Beijing Science and Technology NOVA Program 2007A063 (L.Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingqiang Zhang or Fuchu He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1790 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, C., Xing, G., Xie, P. et al. KRAB-type zinc-finger protein Apak specifically regulates p53-dependent apoptosis. Nat Cell Biol 11, 580–591 (2009). https://doi.org/10.1038/ncb1864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing