Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart

Abstract

Short regions of overlap between ends of antiparallel microtubules are central elements within bipolar microtubule arrays. Although their formation requires motors1, recent in vitro studies demonstrated that stable overlaps cannot be generated by molecular motors alone. Motors either slide microtubules along each other until complete separation2,3,4 or, in the presence of opposing motors, generate oscillatory movements5,6,7. Here, we show that Ase1, a member of the conserved MAP65/PRC1 family of microtubule-bundling proteins, enables the formation of stable antiparallel overlaps through adaptive braking of Kinesin-14-driven microtubule–microtubule sliding. As overlapping microtubules start to slide apart, Ase1 molecules become compacted in the shrinking overlap and the sliding velocity gradually decreases in a dose-dependent manner. Compaction is driven by moving microtubule ends that act as barriers to Ase1 diffusion. Quantitative modelling showed that the molecular off-rate of Ase1 is sufficiently low to enable persistent overlap stabilization over tens of minutes. The finding of adaptive braking demonstrates that sliding can be slowed down locally to stabilize overlaps at the centre of bipolar arrays, whereas sliding proceeds elsewhere to enable network self-organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ase1 slows Ncd-driven microtubule sliding.
Figure 2: Ase1 prevents antiparallel microtubules from sliding completely apart.
Figure 3: Moving microtubule ends constitute barriers for Ase1 diffusion.
Figure 4: Quantitative description of microtubule overlap dynamics.

Similar content being viewed by others

References

  1. Goshima, G. & Scholey, J. M. Control of mitotic spindle length. Annu. Rev. Cell Dev. Biol. 26, 21–57 (2010).

    Article  CAS  Google Scholar 

  2. Braun, M., Drummond, D. R., Cross, R. A. & McAinsh, A. D. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nat. Cell Biol. 11, 724–730 (2009).

    Article  CAS  Google Scholar 

  3. Fink, G. et al. The mitotic kinesin-14 Ncd drives directional microtubule–microtubule sliding. Nat. Cell Biol. 11, 717–723 (2009).

    Article  CAS  Google Scholar 

  4. Kapitein, L. C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435, 114–118 (2005).

    Article  CAS  Google Scholar 

  5. Hentrich, C. & Surrey, T. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J. Cell Biol. 189, 465–480 (2010).

    Article  CAS  Google Scholar 

  6. Tao, L. et al. A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays. Curr. Biol. 16, 2293–2302 (2006).

    Article  CAS  Google Scholar 

  7. Vale, R. D., Malik, F. & Brown, D. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. J. Cell Biol. 119, 1589–1596 (1992).

    Article  CAS  Google Scholar 

  8. Manning, A. L. & Compton, D. A. Structural and regulatory roles of nonmotor spindle proteins. Curr. Opin. Cell Biol. 20, 101–106 (2008).

    Article  CAS  Google Scholar 

  9. Janson, M. E. et al. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128, 357–368 (2007).

    Article  CAS  Google Scholar 

  10. Peterman, E. J. G. & Scholey, J. M. Mitotic microtubule crosslinkers: insights from mechanistic studies. Curr. Biol. 19, R1089–R1094 (2009).

    Article  CAS  Google Scholar 

  11. Loiodice, I. et al. Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. Mol. Biol. Cell 16, 1756–1768 (2005).

    Article  CAS  Google Scholar 

  12. Mollinari, C. et al. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J. Cell Biol. 157, 1175–1186 (2002).

    Article  CAS  Google Scholar 

  13. Schuyler, S., Liu, J. & Pellman, D. The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J. Cell Biol. 160, 517–528 (2003).

    Article  CAS  Google Scholar 

  14. Yamashita, A., Sato, M., Fujita, A., Yamamoto, M. & Toda, T. The roles of fission yeast ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol. Biol. Cell 16, 1378–1395 (2005).

    Article  CAS  Google Scholar 

  15. Khmelinskii, A., Roostalu, J., Roque, H., Antony, C. & Schiebel, E. Phosphorylation-dependent protein interactions at the spindle midzone mediate cell cycle regulation of spindle elongation. Dev. Cell 17, 244–256 (2009).

    Article  CAS  Google Scholar 

  16. Fu, C. et al. Phospho-regulated interaction between kinesin-6 Klp9p and microtubule bundler Ase1p promotes spindle elongation. Dev. Cell 17, 257–267 (2009).

    Article  CAS  Google Scholar 

  17. Kapitein, L. C. et al. Microtubule-driven multimerization recruits ase1p onto overlapping microtubules. Curr. Biol. 18, 1713–1717 (2008).

    Article  CAS  Google Scholar 

  18. Gestaut, D. R. et al. Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation. Nat. Cell Biol. 10, 407–414 (2008).

    Article  CAS  Google Scholar 

  19. Powers, A. F. et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865–875 (2009).

    Article  CAS  Google Scholar 

  20. Gardner, M. K. & Odde, D. J. Dam1 complexes go it alone on disassembling microtubules. Nat. Cell Biol. 10, 379–381 (2008).

    Article  CAS  Google Scholar 

  21. Gruneberg, U. et al. KIF14 and citron kinase act together to promote efficient cytokinesis. J. Cell Biol. 172, 363–372 (2006).

    Article  CAS  Google Scholar 

  22. Subramanian, R. et al. Insights into antiparallel microtubule crosslinking by PRC1, a conserved nonmotor microtubule binding protein. Cell 142, 433–443 (2010).

    Article  CAS  Google Scholar 

  23. Bormuth, V., Varga, V., Howard, J. & Schäffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).

    Article  CAS  Google Scholar 

  24. Burbank, K. S., Mitchison, T. J. & Fisher, D. S. Slide-and-cluster models for spindle assembly. Curr. Biol. 17, 1373–1383 (2007).

    Article  CAS  Google Scholar 

  25. Loughlin, R., Heald, R. & Nédélec, F. A computational model predicts Xenopus meiotic spindle organization. J. Cell Biol. 191, 1239–1249 (2010).

    Article  CAS  Google Scholar 

  26. Smertenko, A. P. et al. The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20, 3346–3358 (2008).

    Article  CAS  Google Scholar 

  27. Zhu, C., Lau, E., Schwarzenbacher, R., Bossy-Wetzel, E. & Jiang, W. Spatiotemporal control of spindle midzone formation by PRC1 in human cells. Proc. Natl Acad. Sci. USA 103, 6196–6201 (2006).

    Article  CAS  Google Scholar 

  28. Bratman, S. V. & Chang, F. Stabilization of overlapping microtubules by fission yeast CLASP. Dev. Cell 13, 812–827 (2007).

    Article  CAS  Google Scholar 

  29. Bieling, P., Telley, I. A. & Surrey, T. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142, 420–432 (2010).

    Article  CAS  Google Scholar 

  30. Ruhnow, F., Zwicker, D. & Diez, S. Tracking single particles and elongated filaments with nanometer precision. Biophys. J. 100, 2820–2828 (2011).

    Article  CAS  Google Scholar 

  31. Pollard, T. D. A guide to simple and informative binding assays. Mol. Biol. Cell 21, 4061–4067 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Bräuer for technical assistance; J. Teapal and T. Toda for yeast strains; and R. Schneider, M. Zanic, M. Gardner, J. Howard and B. Mulder for discussions. M.B. and S.D. acknowledge support from the European Research Council (ERC starting grant); G.F. from Boehringer Ingelheim Fonds; S.D. from the Deutsche Forschungsgemeinschaft (DFG Heisenberg Programme); and M.E.J. from the Division for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

M.B., Z.L., G.F., S.D. and M.E.J. designed the experiments; M.B., Z.L. and G.F. carried out the experiments; M.B., Z.L., G.F. and F.R. analysed the data; Z.L. and M.E.J. developed the model; M.B., Z.L., M.E.J. and S.D. wrote the manuscript; M.E.J. and S.D. initiated the research and supervised the work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Stefan Diez or Marcel E. Janson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1157 kb)

Supplementary Movie 1

Supplementary Information (MOV 66 kb)

Supplementary Movie 2

Supplementary Information (MOV 42 kb)

Supplementary Movie 3

Supplementary Information (MOV 444 kb)

Supplementary Movie 4

Supplementary Information (MOV 1213 kb)

Supplementary Movie 5

Supplementary Information (MOV 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, M., Lansky, Z., Fink, G. et al. Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat Cell Biol 13, 1259–1264 (2011). https://doi.org/10.1038/ncb2323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing