Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace

Abstract

The ‘blue box’ (cyclobis(paraquat-p-phenylene) or CBPQT4+), developed by Stoddart and colleagues, forms effective charge transfer complexes with a variety of electron-rich species and has been used to support the formation of a wide range of interlocked structures. However, little effort seems to have been devoted to generalizing the blue box concept. We describe a new flexible tetracationic macrocycle—a ‘Texas-sized’ molecular box. This positively charged receptor is capable of binding the mono-terephthalate anion, forming pseudorotaxanes. These pseudorotaxanes self-assemble into short supramolecular pseudo-oligorotaxanes in solution and more extended pseudo-polyrotaxanes in the solid state. The supramolecular oligomers formed in solution are environmentally responsive; they undergo deaggregation as the overall concentration of the cationic and anionic constituents is reduced, the temperature is increased, or the protonation state of the threading mono-terephthalate anion is changed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of the tetracationic imidazolium macrocycle 14+.
Figure 2: Two crystallographically independent single-crystal X-ray structures of 14+·4PF6.
Figure 3: Observed binding interactions between host 14+ and terephthalic acid, mono-terephthalate anion and di-terephthalate anion.
Figure 4: Single X-ray crystal structure of [14+·mono-terephthalate·3PF6·4H2O].

Similar content being viewed by others

References

  1. Schill, G. Catenanes, Rotaxanes and Knots (Academic Press, 1971).

    Google Scholar 

  2. Dietrich-Buchecker, C. & Sauvage, J.-P. Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands. Chem. Rev. 87, 795–810 (1987), and references therein.

    Article  CAS  Google Scholar 

  3. Fujita, M. Self-assembly of [2]catenanes containing metals in their backbones. Acc. Chem. Res. 32, 53–61 (1999), and references therein.

    Article  CAS  Google Scholar 

  4. Amabilino, D. B. & Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem. Rev. 95, 2725–2828 (1995), and references therein.

    Article  CAS  Google Scholar 

  5. Schalley, C. A., Weilandt, T., Brüggemann, J. & Vögtle, F. Hydrogen-bond-mediated template synthesis of rotaxanes, catenanes and knotanes. Top. Curr. Chem. 248, 141–200 (2004).

    Article  Google Scholar 

  6. Lankshear, M. D. & Beer, P. D. Interweaving anion templation. Acc. Chem. Res. 40, 657–668 (2007), and references therein.

    Article  CAS  Google Scholar 

  7. Chmielewski, M. J. et al. Sulfate anion templation of a neutral pseudorotaxane assembly using an indolocarbazole threading component. Chem. Commun. 3154–3156 (2008).

  8. Beer, P. D., Sambrook, M. R. & Curiel, D. Anion-templated assembly of interpenetrated and interlocked structures. Chem. Commun. 2105–2117 (2006).

  9. Chiu, S.-H. et al. Making molecular-necklaces from rotaxanes. Tetrahedron 58, 807–814 (2002).

    Article  CAS  Google Scholar 

  10. Chang, T. et al. Toward interlocked molecules beyond catenanes and rotaxanes. Org. Lett. 2, 2943–2946 (2000).

    Article  CAS  Google Scholar 

  11. Lipatov, Y. S., Lipatova, T. E. & Kosyanchuk, L. F. Synthesis and structure of macromolecular topological compounds. Adv. Polym. Sci. 88, 49–76 (1989).

    Article  CAS  Google Scholar 

  12. Shen, Y. X., Xie, D. & Gibson, H. W. Polyrotaxanes based on polyurethane backbones and crown ether cyclics. 1. Synthesis. J. Am. Chem. Soc. 116, 537–548 (1994).

    Article  CAS  Google Scholar 

  13. Feringa, B. L. Molecular Switches (Wiley-VCH, 2001), and references therein.

    Book  Google Scholar 

  14. Pease, A. R. et al. Switching devices based on interlocked molecules. Acc. Chem. Res. 34, 433–444 (2001), and references therein.

    Article  CAS  Google Scholar 

  15. Muraoka, T., Kinbara, K. & Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

    Article  CAS  Google Scholar 

  16. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  17. Odell, B. et al. Cyclobis(paraquat-p-phenylene). A tetracationic multipurpose receptor. Angew. Chem. Int. Ed. Engl. 27, 1547–1550 (1988).

    Article  Google Scholar 

  18. Amabilino, D. B. & Stoddart, J. F. Self-assembly and macromolecular design. Pure Appl. Chem. 65, 2351–2359 (1993).

    Article  CAS  Google Scholar 

  19. Langford, S. J. & Stoddart, J. F. Self-assembly in chemical systems. Pure Appl. Chem. 68, 1255–1260 (1996).

    Article  CAS  Google Scholar 

  20. Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  Google Scholar 

  21. Trabolsi, A. et al. Radically enhanced molecular recognition. Nature Chem. 2, 42–49 (2010).

    Article  CAS  Google Scholar 

  22. Caldwell, S. T. et al. Tuneable pseudorotaxane formation between a biotin–avidin bioconjugate and CBPQT4+. Chem. Commun. 2650–2652 (2008).

  23. Northrop, B. H., Khan, S. J. & Stoddart, J. F. Kinetically controlled self-assembly of pseudorotaxanes on crystallization. Org. Lett. 8, 2159–2162 (2006).

    Article  CAS  Google Scholar 

  24. Raymo, F. M. & Stoddart, J. F. Interlocked macromolecules. Chem. Rev. 99, 1643–1663 (1999), and references therein.

    Article  CAS  Google Scholar 

  25. Anelli, P. L. et al. Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order. J. Am. Chem. Soc. 114, 193–218 (1992).

    Article  CAS  Google Scholar 

  26. Klajn, R. et al. Dynamic hook-and-eye nanoparticle sponges. Nature Chem. 1, 733–738 (2009).

    Article  CAS  Google Scholar 

  27. Mason, P. E., Parsons, I. W. & Tolley, M. S. The first demonstration of molecular queuing in pseudo[n]polyrotaxanes: a novel variant of supramolecular motion. Angew. Chem. Int. Ed. Engl. 35, 2238–2241 (1996).

    Article  CAS  Google Scholar 

  28. Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article  CAS  Google Scholar 

  29. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    Article  CAS  Google Scholar 

  30. Spruell, J. M. et al. A push-button molecular switch. J. Am. Chem. Soc. 131, 11571–11580 (2009).

    Article  CAS  Google Scholar 

  31. Amabilino, D. B., Ashton, P. R., Tolley, M. S., Stoddart, J. F. & Williams, D. J. Isomeric self-assembling [2]catenanes. Angew. Chem. Int. Ed. Engl. 32, 1297–1303 (1993).

    Article  Google Scholar 

  32. Ashton, P. R. et al. Molecular meccano, 51 diastereoselective self-assembly of [2]catenanes. Eur. J. Org. Chem. 995–1004 (1999).

  33. Asakawa, M. et al. Cyclobis(paraquat-4,4′-biphenylene)—an organic molecular square. Chem. Eur. J. 2, 877–893 (1996).

    Article  CAS  Google Scholar 

  34. Amabilino, D. B. et al. Molecular meccano. 2. Self-assembly of [n]catenanes. J. Am. Chem. Soc. 117, 1271–1293 (1995).

    Article  CAS  Google Scholar 

  35. Ashton, P. R. et al. The template-directed synthesis of cyclobis(paraquat-4,4′-biphenylene). Chem. Commun. 487–490 (1996).

  36. Ashton, P. R. et al. Molecular meccano, 57 template-directed syntheses, spectroscopic properties and electrochemical behavior of [n]catenanes. Eur. J. Org. Chem. 1121–1130 (2000).

  37. Balzani, B. et al. Spectroscopic and electrochemical properties of catenanes containing the 2,7-diazapyrenium units. Supramol. Chem. 13, 303–311 (2001).

    Article  CAS  Google Scholar 

  38. Ashton, P. R., Lluïsa, P.-G., Stoddart, J. F., White, A. J. P. & Williams, D. J. Controlling translational isomerism in [2]catenanes. Angew. Chem. Int. Ed. Engl. 34, 571–574 (1995).

    Article  CAS  Google Scholar 

  39. Cantrill, S. J., Pease, A. R. & Stoddart, J. F. A molecular meccano kit. J. Chem. Soc., Dalton Trans. 3715–3734 (2000).

  40. Ashton, P. R. et al. Pseudorotaxanes formed between secondary dialkylammonium salts and crown ethers. Chem. Eur. J. 2, 709–728 (1996).

    Article  CAS  Google Scholar 

  41. Ashton, P. R. et al. An interwoven supramolecular cage. Angew. Chem. Int. Ed. Engl. 36, 59–62 (1997).

    Article  CAS  Google Scholar 

  42. Ashton, P. R. et al. Combining different hydrogen-bonding motifs to self-assemble interwoven superstructures. Chem. Eur. J. 4, 577–589 (1998).

    Article  CAS  Google Scholar 

  43. Cantrill, S. J. et al. Molecular meccano, part 60, the influence of macrocyclic polyether constitution upon ammonium ion/crown ether recognition processes. Chem. Eur. J. 6, 2274–2287 (2000).

    Article  CAS  Google Scholar 

  44. Cantrill, S. J. et al. Tribenzo[27]crown-9: a new ring for dibenzylammonium rods. Org. Lett. 2, 61–64 (2000).

    Article  CAS  Google Scholar 

  45. Tiburcio, J., Davidson, G. J. E. & Loeb, S. J. Pseudo-polyrotaxanes based on a protonated version of the 1,2-bis(4,4′-bipyridinium)ethane-24-crown-8 ether motif. Chem. Commun. 1282–1283 (2002).

  46. Kim, K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002), and references therein.

    Article  CAS  Google Scholar 

  47. Yoon, J., Kim, S. K., Singh, N. J. & Kim, K. S. Imidazolium receptors for the recognition of anions. Chem. Soc. Rev. 35, 355–360 (2006), and references therein.

    Article  CAS  Google Scholar 

  48. Caltagirone, C. & Gale, P. A. Anion receptor chemistry: highlights from 2007. Chem. Soc. Rev. 38, 520–563 (2009), and references therein.

    Article  CAS  Google Scholar 

  49. Alcalde, E., Mesquida, N., Vilaseca, M., Alvarez-Rúa, C. & Garcia-Granda, S. Imidazolium-based dicationic cyclophanes. Solid-state aggregates with unconventional (C–H)+···Cl hydrogen bonding revealed by X-ray diffraction. Supramol. Chem. 19, 501–509 (2007).

    Article  CAS  Google Scholar 

  50. Morris, C. & Coll, H. Determination of Molecular Weight 15–44 (John Wiley & Sons, 1989).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Science Foundation (grant no. CHE 0749571 to J.L.S. and grant no. 0741973 for the X-ray diffractometer) and the Robert A. Welch Foundation (grant F-1018 to J.L.S.) for financial support. Thanks also go to S. Sorey, C. Bielawski, A. Tennyson and K. Keller for their assistance with the NMR spectral, VPO and mass spectrometric studies.

Author information

Authors and Affiliations

Authors

Contributions

J.L.S. and H.-Y.G. conceived this project and designed the experiments. H.-Y.G. contributed to the experimental work. V.M.L. contributed to the crystallographic study. H.-Y.G., B.M.R and E.K. contributed to the data analysis. H.-Y.G., B.M.R., E.K. and J.L.S. co-wrote the paper.

Corresponding author

Correspondence to Jonathan L. Sessler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2976 kb)

Supplementary information

Crystallographic data for compound 1·4PF6·2CH3CN (CIF 21 kb)

Supplementary information

Crystallographic data for compound 1·4PF6·CH3CN (CIF 32 kb)

Supplementary information

Crystallographic data for compound 1·mono-terephthalate anion·3PF6·4H2O (CIF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, HY., Rambo, B., Karnas, E. et al. A ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace. Nature Chem 2, 406–409 (2010). https://doi.org/10.1038/nchem.597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing