Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Finding better protein engineering strategies

Protein improvement strategies today involve widely varying combinations of rational design with random mutagenesis and screening. To make further progress—defined as making subsequent protein engineering problems easier to solve—protein engineers must critically compare these strategies and eliminate less effective ones.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein engineering methods differ widely based on the degree that the enzyme is changed and the amount of information available for rational design.

References

  1. Lutz, S. & Bornscheuer, U.T. (eds.). Protein Engineering Handbook (Wiley-VCH, Weinheim, 2009).

    Google Scholar 

  2. Estell, D.A., Graycar, T.P. & Wells, J.A. J. Biol. Chem. 260, 6518–6521 (1985).

    CAS  PubMed  Google Scholar 

  3. Fox, R.J. et al. Nat. Biotechnol. 25, 338–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Gray, K.A., Zhao, L. & Emptage, M. Curr. Opin. Chem. Biol. 10, 141–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. McCarthy, A. Chem. Biol. 10, 893–894 (2003).

    CAS  PubMed  Google Scholar 

  6. Eschenmoser, A. & Wintner, C.E. Science 196, 1410–1420 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Woodward, R.B. Pure Appl. Chem. 33, 145–177 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Chen-Goodspeed, M., Sogorb, M.A., Wu, F. & Raushel, F.M. Biochemistry 40, 1332–1339 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Seelig, B. & Szostak, J.W. Nature 448, 828–831 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qian, Z. & Lutz, S. J. Am. Chem. Soc. 127, 13466–13467 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Morley, K.L. & Kazlauskas, R.J. Trends Biotechnol. 23, 231–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Neylon, C. Nucleic Acids Res. 32, 1448–1459 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carr, R. et al. ChemBioChem 6, 637–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. DeSantis, G. et al. J. Am. Chem. Soc. 125, 11476–11477 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Bloom, J.D., Labthavikul, S.T., Otey, C.R. & Arnold, F.H. Proc. Natl. Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Weinreich, D.M., Delaney, N.F., DePristo, M.A. & Hartl, D.L. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Reetz, M.T. & Sanchis, J. ChemBioChem 9, 2260–2267 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Whittle, E. & Shanklin, J. J. Biol. Chem. 276, 21500–21505 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Reetz, M.T., Wang, L.W. & Bocola, M. Angew. Chem. Int. Ed. 45, 1236–1241 (2006).

    Article  CAS  Google Scholar 

  20. Reetz, M.T., Kahakeaw, D. & Lohmer, R. ChemBioChem 9, 1797–1804 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bloom, J.D., Romero, P.A., Lu, Z. & Arnold, F.H. Biol. Direct 2, 17 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gupta, R.D. & Tawfik, D.S. Nat. Methods 5, 939–942 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Stemmer, W.P. Nature 370, 389–391 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

U.T.B. thanks the German Research Foundation (DFG, Grant Bo1862/4-1) and R.J.K. the US National Science Foundation (CHE-0616560) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Romas J Kazlauskas or Uwe T Bornscheuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazlauskas, R., Bornscheuer, U. Finding better protein engineering strategies. Nat Chem Biol 5, 526–529 (2009). https://doi.org/10.1038/nchembio0809-526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio0809-526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing