Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes

Abstract

Precise comparisons of mammalian gene maps require common anchor loci as landmarks for conserved chromosomal segments. Using a computer script that automates DNA sequence database alignments, we designed 410 evolutionary conserved primer pair sequences which are specific for anchor locus gene amplification from any mammalian species' DNA. Primer pairs were designed to span introns for polymorphism ascertainment, and to include sufficient exonic sequence (25–400 bp) to allow for gene identification. A total of 318 primer pairs were optimized for domestic cats, and 86% of the sequenced feline PCR products showed homology to the gene of primer origin. A screen of 20 mammals from 11 orders revealed that 35–52% of the 318 primers yielded a single PCR product without further optimization suggesting that nearly 75% can be optimized for any eutherian mammal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Dietrich, W.F. et al. A comprehensive genetic map of the mouse genome. Nature 280, 149–152 (1996).

    Article  Google Scholar 

  3. Jacob, H.J. . et al. A genetic linkage map of the laboratory rat, Rattus norvegicus. Nature Genet. 9, 63–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. O'Brien, S.J. (ed.) Genetic Maps: Locus Maps of Complex Genomes (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1993).

    Google Scholar 

  5. Copeland, N.G. . et al. A genetic linkage map of the mouse: current application and future prospects. Science 262, 57–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. O'Brien, S.J., Seuanez, H.N., Womack, J.E. Mammalian genome organization: An evolutionary view, in Annual Review of Genetics, Vol. (ed. Campbell, A.) 22, 323–351(Annual Reviews Inc., Palo Alto, 1988).

    Google Scholar 

  7. Womack, J.E. & Kata, S.R. Bovine genome mapping: evolutionary inference and the power of comparative genomics. Curr. Opin. Genet Dev. 5, 725–733 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Bishop, M.D. et al. A genetic linkage map for cattle. Genetics 136, 619–639 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. DeBry, R.W. & Seldin, M.F. Human/mouse homology relationships. Genomics 33, 337–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Comparative genome organization: first international workshop. Mamm Genome 7, 717–734 (1996).

  11. Johansson, M., Ellegren, H. & Andersson, L. Comparative mapping reveals extensive linkage conservation — but with gene order rearrangements — between the pig and the human genomes. Genomics 25, 682–690 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Barendse, W. et al.. A genetic linkage map of the bovine genome. Nature Genet. 6, 227–235 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Crawford, A.M. et al. An autosomal genetic linkage map of the sheep genome. Genetics 140, 703–724 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nadeau, J.H. et al. A Rosetta stone of mammalian genetics. Nature 373, 363–635 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. O'Brien, S.J. et al. Anchored reference loci for comparative genome mapping in mammals. Nature Genet. 3, 103–112 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. O'Brien, S.J. Mammalian genome mapping: Lessons and prospects. Curr. Opin. Genet Dev. 1, 105–111 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Hino, O. et al. Universal mapping probes and the origin of human chromosome 3. Proc. Natl. Acad. So. USA 90, 730–734 (1993).

    Article  CAS  Google Scholar 

  18. Mazzarella, R. et al. Conserved sequence-tagged sites: a phylogenetic approach to genome mapping. Proc. Natl. Acad. Sci, USA 89, 3681–3685 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fasman, K.H., Letovsky, S.I., Cottingham, R.W. & Kingsbury, D.T. Improvements to the GDB Human Genome Data Base. Nucl. Acids Res. 24, 57–63 (1996) URL: http://gdbwwv.gdb.org/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Database (MGD) 3. 1, Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, Maine (URL://www.informatics.jax,org/).

  21. Benson, D., Bogjuski, M., Lipman, D.J. & Ostell, J., Nucl. Acids Res. 22, 3441–3444 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Genetics Computer Group. Program Manual for Wisconsin Package, Version 8, Madison, Wl, 1994).

  23. Lincoln, S.E., Daly, M.J. & Lander, E.S. Primer: a computer program for automatically selecting PCR primers. Version 0.5, May 1991).

  24. Lundin, L.G. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16, 1–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Burt, D.W., Bumstead, N., Bitgood, J.J., Ponce de Leon, F A. & Crittenden,, L.B. Chicken genome mapping: a new era in avian genetics. Trends Genet. 11, 190–194 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Botstein, D., White, R.L., Skolnick, M. & Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Poduslo, S.E., Dean, M., Kolch, U. & O'Brien, S.J. Detecting high-resolution polymorphisms in human coding loci by combining PCR and single-strand conformation polymorphism (SSCP) analysis. Am. J. Hum. Genet. 49, 106–111 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lyons, L.A., Raymond, M.M. & O'Brien,, S.J. Comparative genomics: The next generation. Animal Biotech. 5, 103–111 (1994).

    Article  CAS  Google Scholar 

  29. Adams, M.D. et al., Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377, 6547s3 1–174 (1995).

    Article  Google Scholar 

  30. Glavac, D. & Dean, M. Optimization of the single-strand conformation and polymorphism (SSCP) technique for detection of point mutations. Hum. Mutat. 2, 404–414 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. O'Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, L., Laughlin, T., Copeland, N. et al. Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat Genet 15, 47–56 (1997). https://doi.org/10.1038/ng0197-47

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0197-47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing