Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vivo modulation of Hmgic reduces obesity

Abstract

The HMGI family of proteins consists of three members1,2, HMGIC, HMGI and HMGI(Y), that function as architectural factors3,4,5 and are essential components of the enhancesome6,7. HMGIC is predominantly expressed in proliferating, undifferentiated mesenchymal cells and is not detected in adult tissues8,9. It is disrupted and misexpressed in a number of mesenchymal tumour cell types10,11,12, including fat-cell tumours12 (lipomas). In addition Hmgic–/– mice have a deficiency in fat tissue13. To study its role in adipogenesis and obesity, we examined Hmgic expression in the adipose tissue of adult, obese mice. Mice with a partial or complete deficiency of Hmgic resisted diet-induced obesity. Disruption of Hmgic caused a reduction in the obesity induced by leptin deficiency (Lepob/Lepob) in a gene-dose–dependent manner. Our studies implicate a role for HMGIC in fat-cell proliferation, indicating that it may be an adipose-specific target for the treatment of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hmgic expression in the white adipose tissue (WAT) of obese mice.
Figure 2: Hmgic−/− and Hmgic+/− mice are resistant to diet-induced obesity.
Figure 3
Figure 4: Growth curves of Hmgic+/−, Lepob/+ intercross progeny.
Figure 5: Adiposity of Hmgic−/−, Lepob/Lepob and Hmgic+/−, Lepob/Lepob mice is reduced compared with that of Lepob/Lepob mice.
Figure 6: A model for HMGIC in adipogenesis and obesity.

Similar content being viewed by others

References

  1. Grosschedl, R., Giese, K. & Pagel, J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10, 94–100 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Bustin, M., Lehn, D. & Landsman, D. Structural features of the HMG chromosomal proteins and their genes. Biochem. Biophys. Acta 1049, 231–243 (1990).

    CAS  PubMed  Google Scholar 

  3. Wolffe, A. Architectural transcription factors. Science 264, 1100–1101 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, X. & Chada, K. HMGI family proteins: architectural transcription factors in mammalian development and cancer. Keio J. Med. 47, 73–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Mantovani, F. et al. NF-κB mediated transcriptional activation is enhanced by the architectural factor HMGI-C. Nucleic Acids Res. 26, 1433–1439 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thanos, D. & Maniatis, T. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83, 1091–1100 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Carey, M. The enhancesome and transcriptional synergy. Cell 92, 5–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, X., Benson, K., Ashar, H. & Chada, K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376, 771–774 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Hirning-Folz, U., Wilda, M., Rippe, V., Bullerdiek, J. & Hameister, H. The expression pattern of the Hmgic gene during development. Genes Chrom. Cancer 23, 350–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Schoenmakers, E. et al. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumors. Nature Genet. 10, 436–443 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Tkachenko, A., Ashar, H.R., Meloni, A.M., Sandberg, A.A. & Chada, K.K. Misexpression of disrupted HMGI architectural factors activates alternative pathways of tumorigenesis. Cancer Res. 57, 2276–2280 (1997).

    CAS  PubMed  Google Scholar 

  12. Ashar, H.R. et al. Disruption of the architectural factor HMGI-C: DNA-binding A-T hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 82, 57–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Benson, K. & Chada, K. Minimouse: phenotypic characterization of a transgenic insertional mutant allelic to pygmy. Genet. Res. 64, 27–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. West, D., Boozer, C., Moody, D. & Atkinson, R. Dietary obesity in the mouse: interaction of strain with diet composition. Am. J. Physiol. 262, R1025–R1032 (1992).

    CAS  PubMed  Google Scholar 

  15. Rogalla, P. et al. HMGI-C expression patterns in human tissues. Am. J. Pathol. 149, 775–779 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Green, M. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M. & Searle, A.) 265–266 (Oxford University Press, Oxford and New York, 1989).

    Google Scholar 

  17. Herberg, L. & Coleman, D. Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26, 59–99 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–431 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Bates, M., Nauss, S., Hagman, N. & Mayer, J. Fat metabolism in three forms of experimental obesity. Am. J. Physiol. 180, 301–303 (1955).

    Article  CAS  PubMed  Google Scholar 

  20. Johnson, P. & Hirsch, J. Cellularity of adipose depots in six strains of genetically obese mice. J. Lipid Res. 13, 2–11 (1972).

    CAS  PubMed  Google Scholar 

  21. Frankel, W. & Schork, N. Who's afraid of epistasis? Nature Genet. 14, 371–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Reeves, R., Langan, T. & Nissen, M. Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: reduction of binding affinity. Proc. Natl Acad. Sci. USA 88, 1671–1675 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tavtigian, S., Zabludoff, S. & Wold, B. Cloning of mid-G1 serum response genes and identification of a subset regulated by conditional myc expression. Mol. Biol. Cell 5, 375–388 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klyde, B. & Hirsch, J. Increased cellular proliferation in adipose tissue of adult rats fed a high-fat diet. J. Lipid Res. 20, 705–715 (1979).

    CAS  PubMed  Google Scholar 

  25. Ailhaud, G., Grimaldi, P. & Negrel, R. Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12, 207–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Flier, J. & Maratos-Flier, E. Obesity and the hypothalamus: novel peptides for new pathways. Cell 92, 437–440 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Pi-Sunyer, F. X. Medical hazards of obesity. Ann. Intern. Med. 119, 655–670 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Flegal, K., Carrol, M., Kuczmarski, R. & Johnson, C. Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int. J. Obes. Relat. Metab. Disord. 22, 39–47 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Cummings, D.E. et al. Genetically lean mice result from targeted disruption of the RIIβ subunit of protein kinase A. Nature 382, 622–626 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. D'Armiento, HMGene, Inc. and members of the laboratory for a critical reading of the manuscript. K.C. is supported by National Institutes of Health grant CA77929 and NJ Commission on Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Chada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, A., Chada, K. In vivo modulation of Hmgic reduces obesity. Nat Genet 24, 377–380 (2000). https://doi.org/10.1038/74207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing