Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells

Abstract

Members of the CD1 family present antigenic lipids to T lymphocytes. CD1 molecules survey endocytic compartments for lipid antigens that are sorted into these vesicles after incorporation into the membrane bilayer, and extraction from the bilayer is likely to be a critical step for lipid association. We hypothesized that lysosomal saposins, which are cofactors required for sphingolipid degradation, might be involved in this process. Here we show that saposins, although not required for the autoreactive recognition of CD1d by natural killer T cells, are indispensable for the binding of an exogenous lipid antigen, α-galactosylceramide, to CD1d in the endocytic pathway. We suggest that saposins mobilize monomeric lipids from lysosomal membranes and facilitate their association with CD1d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Saposins do not change the expression of CD1d on the cell surface.
Figure 2: Presentation of α-GalCer by human CD1d is enhanced by saposins.
Figure 3: Saposin expression does not enhance the autoreactivity of CD1d-restricted T cell cells.
Figure 4: Endocytic binding of α-GalCer to CD1d is saposin dependent.
Figure 5: The absence of prosaposin does not inhibit CD1d endocytosis.
Figure 6: Lysosomal formation of CD1d–α-GalCer complexes is saposin dependent.

Similar content being viewed by others

References

  1. Porcelli, S.A. & Modlin, R.L. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol. 17, 297–329 (1999).

    Article  CAS  Google Scholar 

  2. Beckman, E.M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691–694 (1994).

    Article  CAS  Google Scholar 

  3. Moody, D.B. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404, 884–888 (2000).

    Article  CAS  Google Scholar 

  4. Porcelli, S., Morita, C.T. & Brenner, M.B. CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature 360, 593–597 (1992).

    Article  CAS  Google Scholar 

  5. Sieling, P.A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227–230 (1995).

    Article  CAS  Google Scholar 

  6. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 (1999).

    Article  CAS  Google Scholar 

  7. Shamshiev, A. et al. The αβ T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13, 255–264 (2000).

    Article  CAS  Google Scholar 

  8. Shamshiev, A. et al. Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med. 195, 1013–1021 (2002).

    Article  CAS  Google Scholar 

  9. Brossay, L. et al. Structural requirements for galactosylceramide recognition by CD1-restricted NK T cells. J. Immunol. 161, 5124–5128 (1998).

    CAS  PubMed  Google Scholar 

  10. Brossay, L. et al. CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  Google Scholar 

  11. Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol. 161, 3271–3281 (1998).

    CAS  PubMed  Google Scholar 

  12. Gumperz, J.E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  Google Scholar 

  13. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  14. Spada, F.M., Koezuka, Y. & Porcelli, S.A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188, 1529–1534 (1998).

    Article  CAS  Google Scholar 

  15. Zajonc, D.M., Elsliger, M.A., Teyton, L. & Wilson, I.A. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nat. Immunol. 4, 808–815 (2003).

    Article  CAS  Google Scholar 

  16. Gadola, S.D. et al. Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol. 3, 721–726 (2002).

    Article  CAS  Google Scholar 

  17. Moody, D.B. & Porcelli, S.A. Intracellular pathways of CD1 antigen presentation. Nat. Rev. Immunol. 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  18. Briken, V., Jackman, R.M., Watts, G.F., Rogers, R.A. & Porcelli, S.A. Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J. Exp. Med. 192, 281–288 (2000).

    Article  CAS  Google Scholar 

  19. Jackman, R.M. et al. The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8, 341–351 (1998).

    Article  CAS  Google Scholar 

  20. Sugita, M. et al. Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273, 349–352 (1996).

    Article  CAS  Google Scholar 

  21. Sugita, M., van Der Wel, N., Rogers, R.A., Peters, P.J. & Brenner, M.B. CD1c molecules broadly survey the endocytic system. Proc. Natl. Acad. Sci. USA 97, 8445–8450 (2000).

    Article  CAS  Google Scholar 

  22. Roberts, T.J. et al. Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J. Immunol. 168, 5409–5414 (2002).

    Article  CAS  Google Scholar 

  23. Sugita, M. et al. Separate pathways for antigen presentation by CD1 molecules. Immunity 11, 743–752 (1999).

    Article  CAS  Google Scholar 

  24. Chiu, Y.H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med. 189, 103–110 (1999).

    Article  CAS  Google Scholar 

  25. Chiu, Y.H. et al. Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat. Immunol. 3, 55–60 (2002).

    Article  CAS  Google Scholar 

  26. Brossay, L. et al. Mouse CD1-autoreactive T cells have diverse patterns of reactivity to CD1+ targets. J. Immunol. 160, 3681–3688 (1998).

    CAS  PubMed  Google Scholar 

  27. Ernst, W.A. et al. Molecular interaction of CD1b with lipoglycan antigens. Immunity 8, 331–340 (1998).

    Article  CAS  Google Scholar 

  28. Moody, D.B., Reinhold, B.B., Reinhold, V.N., Besra, G.S. & Porcelli, S.A. Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells. Immunol. Lett. 65, 85–91 (1999).

    Article  CAS  Google Scholar 

  29. Moody, D.B. et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat. Immunol. 3, 435–442 (2002).

    Article  CAS  Google Scholar 

  30. Mukherjee, S., Soe, T.T. & Maxfield, F.R. Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol. 144, 1271–1284 (1999).

    Article  CAS  Google Scholar 

  31. Sandhoff, K., Kolter, T. & Harzar, K. Sphingolipid activator proteins. In The Metabolic and Molecular Bases of Inherited Disease (eds. Scriver, C., Beaudet, A.L., Sly, W.S. & Valle, D.) 3371–3388 (McGraw-Hill, New York, 2001).

    Google Scholar 

  32. Fujita, N. et al. Targeted disruption of the mouse sphingolipid activator protein gene: a complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum. Mol. Genet. 5, 711–725 (1996).

    Article  CAS  Google Scholar 

  33. Exley, M., Garcia, J., Balk, S.P. & Porcelli, S. Requirements for CD1d recognition by human invariant Vα24+ CD4-CD8-T cells. J. Exp. Med. 186, 109–120 (1997).

    Article  CAS  Google Scholar 

  34. Burkhardt, J.K. et al. Accumulation of sphingolipids in SAP-precursor (prosaposin)-deficient fibroblasts occurs as intralysosomal membrane structures and can be completely reversed by treatment with human SAP-precursor. Eur. J. Cell Biol. 73, 10–18 (1997).

    CAS  PubMed  Google Scholar 

  35. Avva, R.R. & Cresswell, P. In vivo and in vitro formation and dissociation of HLA-DR complexes with invariant chain-derived peptides. Immunity 1, 763–774 (1994).

    Article  CAS  Google Scholar 

  36. Fischer, G. & Jatzkewitz, H. The activator of cerebroside sulphatase. Binding studies with enzyme and substrate demonstrating the detergent function of the activator protein. Biochim. Biophys. Acta 481, 561–572 (1977).

    Article  CAS  Google Scholar 

  37. Li, S.C., Sonnino, S., Tettamanti, G. & Li, Y.T. Characterization of a nonspecific activator protein for the enzymatic hydrolysis of glycolipids. J. Biol. Chem. 263, 6588–6591 (1988).

    CAS  PubMed  Google Scholar 

  38. Vogel, A., Schwarzmann, G. & Sandhoff, K. Glycosphingolipid specificity of the human sulfatide activator protein. Eur. J. Biochem. 200, 591–597 (1991).

    Article  CAS  Google Scholar 

  39. Hiraiwa, M., Soeda, S., Kishimoto, Y. & O'Brien, J.S. Binding and transport of gangliosides by prosaposin. Proc. Natl. Acad. Sci. USA 89, 11254–11258 (1992).

    Article  CAS  Google Scholar 

  40. Morimoto, S. et al. Interaction of saposins, acidic lipids, and glucosylceramidase. J. Biol. Chem. 265, 1933–1937 (1990).

    CAS  PubMed  Google Scholar 

  41. Vaccaro, A.M. et al. pH-dependent conformational properties of saposins and their interactions with phospholipid membranes. J. Biol. Chem. 270, 30576–30580 (1995).

    Article  CAS  Google Scholar 

  42. Vaccaro, A.M. et al. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J. Biol. Chem. 272, 16862–16867 (1997).

    Article  CAS  Google Scholar 

  43. Wilkening, G., Linke, T. & Sandhoff, K. Lysosomal degradation on vesicular membrane surfaces. Enhanced glucosylceramide degradation by lysosomal anionic lipids and activators. J. Biol. Chem. 273, 30271–30278 (1998).

    Article  CAS  Google Scholar 

  44. Ciaffoni, F. et al. Saposin D solubilizes anionic phospholipid-containing membranes. J. Biol. Chem. 276, 31583–31589 (2001).

    Article  CAS  Google Scholar 

  45. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998).

    Article  CAS  Google Scholar 

  46. Joyce, S. et al. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279, 1541–1544 (1998).

    Article  CAS  Google Scholar 

  47. De Silva, A.D. et al. Lipid protein interactions: the assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J. Immunol. 168, 723–733 (2002).

    Article  Google Scholar 

  48. Kang, S.J. & Cresswell, P. Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J. Biol. Chem. 277, 44838–44844 (2002).

    Article  CAS  Google Scholar 

  49. Kang, S.J. & Cresswell, P. Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. Embo. J. 21, 1650–1660 (2002).

    Article  CAS  Google Scholar 

  50. Turvy, D.N. & Blum, J.S. Detection of biotinylated cell surface receptors and MHC molecules in a capture ELISA: a rapid assay to measure endocytosis. J. Immunol. Methods 212, 9–18 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Ackerman, A. Chow, R. Lackman, D. Peaper, J-H Shim, R. Teel and W. Yuan for their help, and N. Dometios for manuscript preparation. Supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cresswell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SJ., Cresswell, P. Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 5, 175–181 (2004). https://doi.org/10.1038/ni1034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing