Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence that hematopoiesis may be a stochastic process in vivo

Abstract

To study the behavior of hematopoietic stem cells in vivo, hematopoiesis was simulated by assuming that all stem cell decisions (that is, replication, apoptosis, initiation of a differentiation/maturation program) were determined by chance. Predicted outcomes from simulated experiments were compared with data obtained in autologous marrow transplantation studies of glucose 6–phosphate dehydrogenase (G6PD) heterozygous female Safari cats. With this approach, we prove that stochastic differentiation can result in the wide spectrum of discrete outcomes observed in vivo, and that clonal dominance can occur by chance. As the analyses also suggest that the frequency of feline hematopoietic stem cells is only 6 per 107 nucleated marrow cells, and that stem cells do not replicate on average more frequently than once every three weeks, these large–animal data challenge clinical strategies for marrow transplantation and gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Till, J.E., McCulloch, E.A. & Siminovitch, L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. USA. 51, 29–36 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ogawa, M., Porter, P.N. & Nakahata, T. Renewal and commitment to differentiation of hematopoietic stem cells (an interpretive review). Blood 61, 823–829 (1983).

    CAS  PubMed  Google Scholar 

  3. Gordon, M.Y. & Amos, T.A.S. Stochastic effects in hematopoiesis. Stem Cells 12, 175–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Fairbairn, L.J., Cowling, G.J., Reipert, B.M. & Dexter, T.M. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell. 74, 823–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Jordan, C.T., McKearn, J.P. & Lemischka, I.R. Cellular and developmental properties of fetal hematopoietic stem cells. Cell. 61, 952–963 (1990).

    Article  Google Scholar 

  6. Jones, R.J., Wagner, J.E., Celano, P., Zicha, M.S. & Sharkis, S.J. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347, 188–189 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Terstappen, L.W.M.M., Huang, S., Safford, M., Lansdorp, P.M. & Loken, M.R. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+ CD34 progenitor cells. Blood 77, 1218–1227 (1991).

    CAS  PubMed  Google Scholar 

  8. Keifer, F., Wagner, E.F. & Keller, G. Fractionation of mouse bone marrow by adherence separates primitive hematopoietic stem cells from in vitro colony-forming cells. Blood. 78, 2577–2582 (1991).

    Google Scholar 

  9. Ogata, H. et al. Separation of hematopoietic stem cells into two populations and their characterization. Blood. 80, 91–95 (1992).

    CAS  PubMed  Google Scholar 

  10. Uchida, N. & Weissman, I.L. Searching for hematopoietic stem cells: Evidence that Thy-1.1Io Lin Sca-1+ cells are the only stem cells in C75BL/Ka-Thy-l.l bone marrow. J. Exp. Med. 175, 175–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.-M. & Peault, B. Isolation of a candidate human hematopoietic stem cell population. Proc. Natl. Acad. Sci. USA. 89, 2804–2808 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spain, L.M. & Mulligan, R.C. Purification and characterization of retrovirally transduced hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 89, 3790–3794 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onishi, M. et al. CD4dull+ hematopoietic progenitor cells in murine bone marrow. Blood. 81, 3217–3225 (1993).

    CAS  PubMed  Google Scholar 

  14. Wolf, N.S., Kona, A., Priestley, G.V. & Bartalmez, S.H. In vivo and in vitro characterization of long-term repopulating primitive hematopoietic stem cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selections. Exp. Hematol. 21, S14–22 (1993).

    Google Scholar 

  15. Uchida, N., Aguila, H.L., Fleming, W.H., Jerabek, L. & Weissman, I.L. Rapid and sustained hematopoietic recovery in lethally irradiated mice transplanted with purified Thy-l.1lo LinSca-1+ hematopoietic stem cells. Blood 83, 3358–3379 (1994).

    Google Scholar 

  16. Orlic, D. & Bodine, D.M. What defines a pluripotent hematopoietic stem cell (PHSC): Will the real PHSC please stand up! Blood 84, 3991–3994 (1994).

    CAS  PubMed  Google Scholar 

  17. O-Brien, S.J. Molecular genetics in the domestic cat and its relatives. Trends Genet. 2, 137–142 (1986).

    Article  CAS  Google Scholar 

  18. Abkowitz, J.L. et al. Feline G-6-PD cellular mosaicism: Application to the study of retrovirus-induced pure red cell aplasia. J. Clin. Invest. 75, 133–140 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abkowitz, J.L., Linenberger, M.L., Newton, M.F., Ott, R.L. & Guttorp, P. Evidence for the maintenance of hematopoiesis in a large animal by the sequential activation of stem cell clones. Proc. Natl. Acad. Sci. USA 87, 9062–9066 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abkowitz, J.L. et al. The behavior of hematopoietic stem cells in a large animal. Proc. Natl. Acad. Sci. USA 92, 2031–2035 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uchida, N., Fleming, W.H., Alpern, E.J. & Weissman, I.L. Heterogeneity of hematopoietic stem cells. Curr. Opin. Immunol. 5, 177–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Nash, R., Storb, R. & Neiman, P. Polyclonal reconstitution of human marrow after allogeneic bone marrow transplantation. Blood. 72, 2031–2037 (1988).

    CAS  PubMed  Google Scholar 

  23. Turhan, A.A., Humphries, R.K., Phillips, G.L., Eaves, A.C. & Eaves, C.J. Clonal hematopoiesis demonstrated by X-linked DNA polymorphisms after allogeneic bone marrow transplantation. N. Engl. J. Med. 320, 1655–1661 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Vogel, H., Niewisch, H. & Matioli, G. Stochastic development of stem cells. J. Theor. Biol. 22, 249–270 (1969).

    Article  CAS  PubMed  Google Scholar 

  25. Posakony, J.W. Nature versus nurture: Asymmetric cell divisions in Drosophila bristle development. Cell. 76, 415–418 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Berardi, A.C., Wang, A., Levine, J.D., Lopez, P. & Scadden, D.T. Functional isolation and characterization of human hematopoietic stern cells. Science. 267, 104–107 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Stewart, F.M., Crittenden, R.B., Lowry, P.A., Person-White, S. & Quesenberry, P.J., Long-term engraftment of normal and post-5-fluorouracil murine marrow into normal nonmyeloablated mice. Blood. 81, 2566–2571 (1993).

    CAS  PubMed  Google Scholar 

  28. Harrison, D.E., Astle, C.M. & Lerner, C. Number and continuous proliferative patterns of transplanted primitive immunohematopoietic stem cells. Proc. Natl. Acad. Sci. USA. 85, 822–826 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dick, J.E., Magli, M.C., Huszar, D., Phillips, R.A. & Bernstein, A. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hematopoietic system of W/Wv mice. Cell. 42, 71–79 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Lemischka, I.R., Raulet, D.H. & Mulligan, R.C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Capel, B., Hawley, R., Covarrubias, L., Hawley, T. & Mintz, B. Clonal contributions of small numbers of retrovirally marked hematopoietic stem cells engrafted in unirradiated neonatal W/WV mice. Proc. Natl. Acad. Sci. USA. 86, 4564–4568 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Snodgrass, R. & Keller, G. Clonal fluctuation within the haematopoietic system of mice reconstituted with retrovirus-infected stem cells. EMBO J. 6, 3955–3960 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jordan, C.T. & Lemischka, I.R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev. 4, 220–232 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Keller, G. & Snodgrass, R. Life span of multipotential hematopoietic stem cells in vivo. J. Exp. Med. 171, 1407–1418 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Capel, B., Hawley, R.G. & Mintz, B. Long-and short-lived murine hematopoietic stem cell clones individually identified with retroviral integration markers. Blood. 75, 2267–2270 (1990).

    CAS  PubMed  Google Scholar 

  36. Harrison, D.E. & Zhong, R.-K. The same exhaustible multilineage precursor produces both myeloid and lymphoid cells as early as 34 weeks after marrow transplantation. Proc. Natl. Acad. Sci. USA. 89, 10134–10138 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Micklem, H.S., Lennon, J.E., Ansell, J.D. & Gray, R.A. Numbers and dispersion of repopulating hematopoietic cell clones in radiation chimeras as functions of injected cell dose. Exp. Hematol. 15, 251–257 (1987).

    CAS  PubMed  Google Scholar 

  38. Coffin, J.M. Retroviridae and their replication. (eds Fields, B.N. & Knipe, D.M.) Virology. 1437–1500 (Raven Press, New York, 1990).

    Google Scholar 

  39. Karlsson, S. Treatment of genetic defects in hematopoietic cell function by gene transfer. Blood. 78, 2481–2492 (1991).

    CAS  PubMed  Google Scholar 

  40. Lothrop, C.D., et al. Expression of a foreign gene in cats reconstituted with retroviral vector infected autologous bone marrow. Blood 78, 237–245 (1991).

    PubMed  Google Scholar 

  41. Bodine, N.M. et al. Long-term in vivo expression of a murine adenosine deaminase gene in Rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 82, 1875–1890 (1993).

    Google Scholar 

  42. Kiem, H.-P. et al. Retrovirus-mediated gene transduction into canine peripheral blood repopulating cells. Blood 83, 1467–1473 (1994).

    CAS  PubMed  Google Scholar 

  43. Guttorp, P., Newton, M.A. & Abkowitz, J.L. A stochastic model for haematopoiesis in cats. IMA J. Math. Appl. Med. Biol. 7, 125–143 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Newton, M., Guttorp, P., Catlin, S.N., Assuncao, R. & Abkowitz, J.L. Stochastic modeling of early hematopoiesis. J. Am. Stat. Assoc. (in the press).

  45. Wichmann, H.E., Loeffler, M. & Schmitz, S. A concept of hematopoietic regulation and its biomathematical realization. Blood Cells 14, 411–429 (1988).

    CAS  PubMed  Google Scholar 

  46. Blackett, N.M. Haemopoietic spleen colony growth: A versatile, parsimonious, predictive model. Cell Tissue Kinet. 20, 393–402 (1987).

    CAS  PubMed  Google Scholar 

  47. Kurnit, D.M., Matthysse, S., Papayannopoulou, P. & Stamatoyannopoulos, G. Stochastic branching model for hematopoietic progenitor cell differentiation. J. Cell. Physiol. 123, 55–63 (1985).

    Article  CAS  PubMed  Google Scholar 

  48. Hogge, D.E. et al. Cytokines acting early in human hematopoiesis. Baillières Clin. Haematol. 7, 49–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Metcalf, D. Hematopotetic regulators: Redundancy or subtlety? Blood 82, 3515–3523 (1993).

    CAS  PubMed  Google Scholar 

  50. Heilinga, H.W. & Richards, P.M. Optimal sequence selection in proteins of known structure by simulated evolution. Proc. Natl. Acad. Sci. USA 91, 5803–5807 (1994).

    Article  Google Scholar 

  51. Guttorp, P. Stochastic Modeling of Scientific Data. (Chapman and Hall, London, 1995).

    Book  Google Scholar 

  52. Arley, N. On the Theory of Stochastic Processes and their Application to the Theory of Cosmic Radiation. (Wiley, New York, 1943).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abkowitz, J., Catlin, S. & Guttorp, P. Evidence that hematopoiesis may be a stochastic process in vivo. Nat Med 2, 190–197 (1996). https://doi.org/10.1038/nm0296-190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0296-190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing