Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The origin of ferroelectricity in magnetoelectric YMnO3

Abstract

Understanding the ferroelectrocity in magnetic ferroelectric oxides is of both fundamental and technological importance. Here, we identify the nature of the ferroelectric phase transition in the hexagonal manganite, YMnO3, using a combination of single-crystal X-ray diffraction, thorough structure analysis and first-principles density-functional calculations. The ferroelectric phase is characterized by a buckling of the layered MnO5 polyhedra, accompanied by displacements of the Y ions, which lead to a net electric polarization. Our calculations show that the mechanism is driven entirely by electrostatic and size effects, rather than the usual changes in chemical bonding associated with ferroelectric phase transitions in perovskite oxides. As a result, the usual indicators of structural instability, such as anomalies in Born effective charges on the active ions, do not hold. In contrast to the chemically stabilized ferroelectrics, this mechanism for ferroelectricity permits the coexistence of magnetism and ferroelectricity, and so suggests an avenue for designing novel magnetic ferroelectrics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystal structure of YMnO3 in the paraelectric and ferroelectric phases.
Figure 2: Three-dimensional schematic view of YMnO3 in the two enantiomorphous polarized states.
Figure 3: Schematic of a MnO5 polyhedron with Y layers above and below.
Figure 4: Orbital-resolved densities of states of Mn, O and Y ions for paraelectric YMnO3.
Figure 5: Energies as a function of the atomic displacements from their centrosymmetric positions.

Similar content being viewed by others

References

  1. Auciello, O., Scott, J.F. & Ramesh, R. The physics of ferroelectric memories. Phys. Today 51, 22–27 (1998).

    Article  CAS  Google Scholar 

  2. Busch-Vishniac, I.J. Trends in electromechanical transduction. Phys. Today 51, 28–34 (1998).

    Article  Google Scholar 

  3. Fujimura, N., Ishida, T., Yoshimura, T. & Ito, T. Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices. Appl. Phys. Lett. 69, 1011–1013 (1996).

    Article  CAS  Google Scholar 

  4. Ito, D., Fujimura, N., Yoshimura, T. & Ito, T. Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors. J. Appl. Phys. 93, 5563–5567 (2003).

    Article  CAS  Google Scholar 

  5. Fiebig, M., Lottermoser, T., Fröhlich, D., Goltsev, A.V. & Pisarev, R.V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  CAS  Google Scholar 

  6. Ok, K.M., Bhuvanesh, N.S.P. & Halasyamani, P.S. Bi2TeO5: Synthesis structure and powder second harmonic generation properties. Inorg. Chem. 40, 1978–1980 (2001).

    Article  CAS  Google Scholar 

  7. Cohen, R.E. & Krakauer, H. Electronic-structure studies of the differences in ferroelectric behavior of BaTiO3 and PbTiO3 . Ferroelectrics 136, 65–83 (1992).

    Article  CAS  Google Scholar 

  8. Cohen, R.E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Article  CAS  Google Scholar 

  9. Hill, N.A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  10. Atanasov, M. & Reinen, D. Density functional studies on the lone pair effect of the trivalent group V elements: I. electronic structure, vibronic coupling, and chemical criteria for the occurrence of lone pair distortions in AX3 molecules (A=N to Bi; X=H, and F to I). J. Phys. Chem. A 105, 5450–5467 (2001).

    Article  CAS  Google Scholar 

  11. Waghmare, U.V., Spaldin, N.A., Kandpal, H.C. & Seshadri, R. First principles indicators of metallicity and cation off-centricity in the IV-VI rock-salt chalcogenides of divalent Ge, Sn and Pb. Phys. Rev. B 67, 125111 (2003).

    Article  Google Scholar 

  12. Seshadri, R. & Hill, N.A. Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3 . Chem. Mater. 13, 2892–2899 (2001).

    Article  CAS  Google Scholar 

  13. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  14. Kuroiwa, Y. et al. Evidence for Pb-O covalency in tetragonal PbTiO3 . Phys. Rev. Lett. 87, 217601 (2001).

    Article  CAS  Google Scholar 

  15. Jones, G.O. & Thomas, P.A. Investigation of the structure and phase transitions in the novel a-site substituted distorted perovskite compound Na0.5Bi0.5TiO3 . Acta Crystallogr. B 58, 168–178 (2002).

    Article  CAS  Google Scholar 

  16. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  17. Glazer, A.M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  18. Van Aken, B.B., Meetsma, A., Tomioka, Y., Tokura, Y. & Palstra, T.T.M. Structural response to O*-O' and magnetic transitions in orthorhombic perovskites. Phys. Rev. B 66, 224414 (2002).

    Article  Google Scholar 

  19. Van Aken, B.B. Structural Response to Electronic Transitions in Hexagonal and Ortho-manganites Thesis, Univ. Groningen (2001).

    Google Scholar 

  20. Yakel, H.L., Koehler, W.C., Bertaut, E.F. & Forrat, E.F. On the crystal structure of the manganese (III) trioxides of the heavy lanthanide and yttrium. Acta Crystallogr. 16, 957–962 (1963).

    Article  CAS  Google Scholar 

  21. Smolenskii, G.A. & Bokov, V.A. Coexistence of magnetic and electric ordering in crystals. J. Appl. Phys. 35, 915–918 (1964).

    Article  CAS  Google Scholar 

  22. Bertaut, E.F., Pauthenet, R. & Mercier, M. Proprietes magnetiques et structures du manganite d'yttrium. Phys. Lett. 7, 110–111 (1963).

    Article  CAS  Google Scholar 

  23. Bertaut, E.F., Pauthenet, R. & Mercier, M. Sur des proprietes magnetiques du manganite d'yttrium. Phys. Lett. 18, 13 (1965).

    Article  CAS  Google Scholar 

  24. Lottermoser, T., Fiebig, M., Fröhlich, D., Kallenbach, S. & Maat, M. Coupling of ferroelectric and antiferromagnetic order parameters in hexagonal RMnO3 . Appl. Phys. B 74, 759–764 (2002).

    Article  CAS  Google Scholar 

  25. Lukaszewicz, K. & Karut-Kalicinska, J. X-ray investigations of the crystal structure and phase transitions of YMnO3 . Ferroelectrics 7, 81–82 (1974).

    Article  CAS  Google Scholar 

  26. Iliev, M.N. et al. Raman- and infrared-active phonons in hexagonal YMnO3: Experiment and lattice-dynamical calculations. Phys. Rev. B 56, 2488–2494 (1997).

    Article  CAS  Google Scholar 

  27. Van Aken, B.B., Meetsma, A. & Palstra, T.T.M. Hexagonal YMnO3 . Acta Crystallogr. C 57, 230–232 (2001).

    Article  CAS  Google Scholar 

  28. Van Aken, B.B., Meetsma, A. & Palstra, T.T.M. Hexagonal LuMnO3 revisited. Acta Cryst. E 57, i38–i40 (2001); ibid. i87–i89; ibid. i101–i103.

    Article  CAS  Google Scholar 

  29. Muñoz, A. et al. Magnetic structure of hexagonal RMnO3 (R = Y, Sc): thermal evolution from neutron powder diffraction. Phys. Rev. B 62, 9498–9510 (2000).

    Article  Google Scholar 

  30. Katsufuji, T. et al. Crystal structure and magnetic properties of hexagonal RMnO3 (R = Y, Lu and Sc) and the effect of doping. Phys. Rev. B 66, 134434 (2002).

    Article  Google Scholar 

  31. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, 864–871 (1964).

    Article  Google Scholar 

  32. Kohn, W. & Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965).

    Article  Google Scholar 

  33. Filippetti, A. & Spaldin, N.A. Self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems. Phys. Rev. B 67, 125109 (2003).

    Article  Google Scholar 

  34. Filippetti, A. & Hill, N.A. Coexistence of magnetism and ferroelectricity in perovskites. Phys. Rev. B 65, 195120 (2002).

    Article  Google Scholar 

  35. Shannon, R.D. & Prewitt, C.T. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  36. Zhong, W., King-Smith, R.D. & Vanderbilt, D. Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994).

    Article  CAS  Google Scholar 

  37. Ghosez, P., Michenaud, J.-P. & Gonze, X. Dynamical atomic charges: The case of ABO3 compounds. Phys. Rev. B 58, 6224–6240 (1998).

    Article  CAS  Google Scholar 

  38. Resta, R., Posternak, M. & Baldereschi, A. Towards a quantum-theory of polarization in ferroelectrics - the case of KNbO3 . Phys. Rev. Lett. 70, 1010–1013 (1993).

    Article  CAS  Google Scholar 

  39. Posternak, M., Resta, R. & Baldereschi, A. Role of covalent bonding in the polarization of perovskite oxides - the case of KNbO3 . Phys. Rev. B 50, 8911–8914 (1994).

    Article  CAS  Google Scholar 

  40. Ghosez, P., Gonze, X. & Michenaud, J.-P. First principles calculations of dielectric and effective charge tensors in barium titanate. Ferroelectrics 153, 91–96 (1994).

    Article  Google Scholar 

  41. King-Smith, R.D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, R1651–R1654 (1993).

    Article  Google Scholar 

  42. Resta, R. Macroscopic electric polarization as a geometric quantum phase. Eur. Phys. Lett. 22, 133–138 (1993).

    Article  CAS  Google Scholar 

  43. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

    Article  CAS  Google Scholar 

  44. Lonkai, T. Electric and Magnetic Order Parameter in the Multiferroic Hexagonal RMnO3 System Thesis, Tübingen Univ. (2003).

    Google Scholar 

  45. Tomuta, D. Investigations of Hexagonal Manganites with Magnetic and Non-Magnetic Rare Earths Thesis, Univ. Leiden (2003).

    Google Scholar 

  46. Mizokawa, T., Khomskii, D.I. & Sawatzky, G.A. Interplay between orbital ordering and lattice distortions in LaMnO3, YVO3, and YTiO3 . Phys. Rev. B 60, 7309–7313 (1999).

    Article  CAS  Google Scholar 

  47. Abrahams, S.C. Ferroelectricity and structure in the YMnO3 family. Acta Crystallogr. B 57, 485–490 (2001).

    Article  CAS  Google Scholar 

  48. Edwardson, P.J. et al. Ferroelectricity in perovskitelike NaCaF3 predicted ab initio. Phys. Rev. B 39, 9738–9741 (1989).

    Article  CAS  Google Scholar 

  49. Boyer, L.L. et al. Predicted properties of NaCaF3 . AIP Conf. Proc. 535, 364–371 (2000).

    Article  CAS  Google Scholar 

  50. Kozlov, G.V., Volkov, A.A., Scott, J.F., Feldkamp, G. & Petzelt, J. Millimeter-wavelength spectroscopy of the ferroelectric phase transition in tris-sarcosine calcium chloride (CH3NHCH2COOH)3CaCl2 . Phys. Rev. B 28, 255–261 (1983).

    Article  CAS  Google Scholar 

  51. Iwata, Y., Shibuya, I., Wada, M., Sawada, A. & Ishibashi, Y. Neutron diffraction study of structural phase transition in ferroelectric Li2Ge7O15 . J. Phys. Soc. Jpn 56, 2420–2427 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Neil Mathur, Jim Scott, Ron Smith and Auke Meetsma for invaluable discussions and experimental assistance. The work by A.F. and N.A.S. on this project was funded by the US National Science Foundation's Division of Materials Research, grant number DMR-0312407. This work is supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM). Beam time at ISIS Rutherford Appleton Laboratory, Chilton, Didcot, UK was funded by Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). A.F. acknowledges funding from the Italian Ministry of Research (MIUR) under the Rentro Cervelli 2002 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Spaldin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Aken, B., Palstra, T., Filippetti, A. et al. The origin of ferroelectricity in magnetoelectric YMnO3. Nature Mater 3, 164–170 (2004). https://doi.org/10.1038/nmat1080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1080

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing