Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Perinatal photoperiod imprints the circadian clock

Abstract

Using real-time gene expression imaging and behavioral analysis, we found that the perinatal photoperiod has lasting effects on the circadian rhythms expressed by clock neurons as well as on mouse behavior, and sets the responsiveness of the biological clock to subsequent changes in photoperiod. These developmental gene × environment interactions tune circadian clock responses to subsequent seasonal photoperiods and may contribute to the influence of season on neurobehavioral disorders in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Persistent effects of perinatal seasonal photoperiod on SCN slice rhythms, on SCN neuronal rhythms, and on behavior.
Figure 2: Interactions of perinatal seasonal photoperiod with subsequent seasonal photoperiod.

Similar content being viewed by others

References

  1. Ohta, H. et al. Pediatr. Res. 60, 304–308 (2006).

    Article  PubMed  Google Scholar 

  2. LeVay, S. et al. J. Comp. Neurol. 191, 1–51 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Dulcis, D. & Spitzer, N.C. Nature 456, 195–201 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wiesel, T.N. & Hubel, D.H. J. Neurophysiol. 26, 978–993 (1963).

    Article  CAS  PubMed  Google Scholar 

  5. Wiesel, T.N. & Hubel, D.H. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  PubMed  Google Scholar 

  6. Foster, R.G. & Roenneberg, T. Curr. Biol. 18, R784–R794 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Ciarleglio, C.M. et al. J. Neurosci. 29, 1670–1676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Inagaki, N. et al. Proc. Natl. Acad. Sci. USA 104, 7664–7669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. VanderLeest, H.T. et al. Curr. Biol. 17, 468–473 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Naito, E. et al. J. Biol. Rhythms 23, 140–149 (2008).

    Article  PubMed  Google Scholar 

  11. Meng, Q.J. et al. Neuron 58, 78–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishida, Y. et al. J. Neurosci. Res. 64, 612–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Barrett, R.K. & Page, T.L. J. Comp. Physiol. A 165, 41–49 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Pyter, L.M. & Nelson, R.J. Behav. Neurosci. 120, 125–134 (2006).

    Article  PubMed  Google Scholar 

  15. Wehr, T.A. et al. Arch. Gen. Psychiatry 58, 1108–1114 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J.Y. Cohen for kindly providing custom software programming. This work was supported by US National Institutes of Health grants P50 MH078028 (D.G.M.), T32 MH64913 and F31 MH080547 (C.M.C.).

Author information

Authors and Affiliations

Authors

Contributions

C.M.C. and D.G.M. designed the experiments. C.M.C., J.C.A. and B.R.S. performed the experiments and compiled the results. C.M.C. and K.L.G. performed statistical analyses. C.M.C. and D.G.M. wrote the paper.

Corresponding author

Correspondence to Douglas G McMahon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1–3, Supplementary Methods and Supplementary Results (PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarleglio, C., Axley, J., Strauss, B. et al. Perinatal photoperiod imprints the circadian clock. Nat Neurosci 14, 25–27 (2011). https://doi.org/10.1038/nn.2699

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing